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Abstract— In this paper we propose a novel distributed model
predictive control (DMPC) based algorithm with a trajectory
predictor for a scenario of landing of unmanned aerial vehicles
(UAVs) on a moving unmanned surface vehicle (USV). The
algorithm is executing DMPC with exchange of trajectories
between the agents at a sufficient rate. In the case of loss
of communication, and given the sensor setup, agents are
predicting the trajectories of other agents based on the available
measurements and prior information. The predictions are then
used as the reference inputs to DMPC. During the landing,
the followers are tasked with avoidance of USV-dependent
obstacles and inter-agent collisions. In the proposed distributed
algorithm, all agents solve their local optimization problem
in parallel and we prove the convergence of the proposed
algorithm. Finally, the simulation results support the theoretical
findings.

I. INTRODUCTION

The problem of autonomous navigation and landing of un-
manned aerial vehicles (UAVs) on other autonomous agents
has drawn a considerable attention in recent years. The
coordination and control of UAVs with optimization-based
methods can be challenging in such scenarios due to the
limited computational resources on-board. In that respect,
a relevant methodology is cooperative distributed model
predictive control whose aim is to optimize control inputs
of a considered agent given the predicted trajectories of
other (neighbouring) agents over the planning horizon. Each
agent solves the finite-horizon distributed optimal control
problem (DOCP), applies its control input and broadcasts
the predicted trajectory to other agents [1]–[3].

The considered agents in our setup are equipped with
sensors, i.e. a camera on the quadrotor (UAV) side, and
a radar on the boat (USV) side, that enable the accurate
position measurement of the neighbouring agents with a
frequency significantly higher than the real-time execution
frequency of the MPC. In the case of loss of communication
between the agents, an agent is left only with the data history
and locally available measurements. During challenging ma-
neuvers such as landing or navigating through a space with
moving obstacles, the frequency of execution of the DMPC
relative to the moving speeds of the agents and obstacles can
severely affect the performance and safety. This is especially
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the case when the references are based only on the current
measurements and not on the committed trajectories, which
indeed occurs in the loss of communication scenario. Note
that, the communication losses we consider can be both tem-
porary and permanent, because even an occasional package
drop for few seconds that can occur during the hardware-in-
the-loop experiments can lead to disastrous outcomes.

The hierarchical approaches presented in the literature [4],
[5] deal with the described problem by separating the control
in different layers. Usually, there is a high-level planning
layer and a safety layer, for example with Control Barrier
Functions (CBF) operating on a much higher frequency
that is tasked with safety in the presence of obstacles [6].
Fundamentally, the concept of MPC is to unify these layers.
Both approaches have their advantages and disadvantages
and all aspects of the chosen concept must be taken into
account to avoid unwanted behaviors. One of the ways is to
use a prediction scheme to complement the available data.
In [7], the authors propose a vision-based framework with
the state estimation for the ground vehicle considered as a
moving target. Estimation-based control protocol proposed in
[8] uses only local observations of the state of the neighbor-
ing agents for rendezvous and flocking control. In another
estimation-based protocol, authors in [9] use particle filter
to predict aircraft trajectories. Prediction-based navigation
in a decentralized event-based scheme is studied in [10].
Moreover, learning-based prediction approaches for multi-
agent systems in the recent years became very popular area of
research [11]–[15]. Unfortunately, most of these approaches
require extensive amount of data for the training purpose and
direct transferability to our particular application is unknown.

In this paper, we case the multi-agent and heterogeneous
(involving UAVs and USVs) rendezvous problem as a leader-
follower network with one leader and one or more follower
agents for autonomous landings. The leader in our case is
the USV boat and UAVs are considered as followers. We
formulate the problem as a cooperative distributed model pre-
dictive control problem with collision avoidance constraints.
In the case when the predicted trajectory is available to the
followers, and the follower is able to dynamically follow the
given reference trajectory, the landing can be executed using
a relatively simple MPC for a single agent follower. However,
a sudden communication loss can severely destabilize the
landing leading to a collision with obstacles on the boat.
Based on this observation, we adopt a prediction scheme in
the case of communication loss to enhance the safety and
performance.

Moreover, we generalize the scheme to multiple-follower



rendezvous in which the inter-agent collisions must be han-
dled. There are several challenges in the inter-agent collision
avoidance in this case. First, in the sequential application of
the algorithm each agent is optimizing its control strategy
based on the shared trajectories that other agents have
committed to. In this case, each agent must wait until all
other agents have shared their new trajectories to begin the
computation of its next control input. Otherwise, using the
old shared trajectories without additional safety measures can
lead to a collision. Second, in the parallel version the agents
operate with the most recent available shared trajectories and
account for the worst-case deviations as a safety measure.
However, this can be very conservative and lead to deadlock.
Third, if one or more agents lose the communication for
some duration safety can be compromised. This, in some
sense, resembles a non-cooperative scenario and we propose
appropriate safety measures.

The contributions of this paper are
• a rendezvous algorithm based on leader-follower DMPC

formulation for autonomous landing in presence of
obstacles

• a convergence proof for a probabilistic safe landing in
the case of communication loss

• an inter-agent collision avoidance robust to communi-
cation losses

The paper is organized as follows. The problem formu-
lation is given in Sec. II and the control architecture is
described in Sec. III. In Sections V and IV, one-follower
and multiple-follower cases are examined and the proposed
rendezvous algorithm is stated. Finally, Sec. VI presents the
simulation results and Sec. VII concludes the paper.

A. Notation

We denote the discrete time step with t and set of agents
with N := {l, f1, ..., fM}. The state trajectories are denoted
with xi(t), the predicted nominal state trajectories with
x̂i(k|t) and optimal state trajectories with x̂∗i (k|t) for an
agent i at time step k + t predicted at time step t. The
collection of trajectories from time step t until t + N is
denoted with xi(·|t); Br := {a : ∥a∥ ≤ r} is a ball of radius
r; ⊕ is Minkowski sum addition defined as x⊕S := {x+a :
a ∈ S}. For an element i ∈ N , we denote a set excluding
the element i with N−i := N \ {i}.

II. PROBLEM FORMULATION

Consider a multi-agent system consisting of one leader
and M follower agents that are dynamically decoupled and
behaving according to the nonlinear discrete time dynamics

xi(t+ 1) = fi(xi(t), ui(t)) + wi(t), (1)

where i ∈ N = {l, f1, ..., fM}, l denotes the leader,
f1, ..., fM denote the followers, M is the number of follower
agents, xi ∈ Xi ⊆ Rni , ui ∈ Ui ⊆ Rmi denote the state and
input of an agent i that are subject to the state and input
constraints Xi and Ui, respectively, and wi ∈ Wi ⊂ Rni is
unknown but bounded disturbance in a compact set Wi.

The follower agents have the same dynamics and state
space of a quadrotor UAV as in [16] which are different from
the leader ones modeled as a 3DoF boat USV model [17].
We assume that the landing platform is rigidly attached to
the boat USV and neglect the heave (vertical motion), roll
and pitch motion. Furthermore, the first three elements of
state vectors of all agents denote the position pi ∈ R3.

The overall multi-agent system dynamics in stack-vector
form are

x(t+ 1) = f(x(t), u(t)) + w(t), (2)

where x = [xTl , x
T
f1
, ..., xTfM ]T , u = [uTl , u

T
f1
, ..., uTfM ]T ,

w = [wT
l , w

T
f1
, ..., wT

fM
]T . The state and input constraints

of the overall system are x ∈ X := Xl × Xf1 × ... × XfM ,
and u ∈ U := Ul×Uf1× ...×UfM , the set of all disturbances
is w ∈ W :=Wl ×Wf1 × ...×WfM .

We formulate the inter-agent collision avoidance con-
straints as

hij(xi(t), xj(t)) ≥ 0, ∀i, j ∈ N , i ̸= j, (3)

where hij : Xi×Xj → R is a function that encodes collisions
and will be defined later. Given a solution x(t) of the system
(2), if the constraint functions (3) are satisfied for all t ≥ t0
then x(t) is a collision-free solution, i.e. x(t) ∈ F ⊆ X ,
where F denotes the collision-free space.

This paper considers the problem of navigating the leader
agent to follow a given reference and follower agents to
a rendezvous position with respect to the leader while
avoiding inter-agent collisions. We denote the leader ref-
erence xr,l(t) = xr(t) and references of the followers
xr,i(xl(t), ci) := [(pl(t) + ci)

T , 0Tni−3]
T with respect to the

position pl(t) of the leader xl and a given offset ci ∈ R3

encoding the particular landing position of an i-th agent,
i ∈ N−l. With a slight abuse of notation, the problem treated
in the paper can be stated as follows.

Problem 1. Consider a multi-agent system (1). Design a
control policy u such that

x(t) ∈ F , t ≥ t0
lim
t→∞

(xl(t), ul(t)) = (xr(t), 0nl
)

lim
t→∞

(xi(t), ui(t)) = (xr,i(xl(t), ci), 0ni
),∀i ∈ N−l

Moreover, we assume that agents are able to communi-
cate and share their current and predicted positions ẑi(·|t)
asynchronously. Because the follower agents have different
dynamics from the leader, and different state vectors, we
define the following mapping from the leader state space Xl

to the follower state space Xi, i ∈ N−l

ẑl(t) = Hx̂l(t), (4)

where H = diag(I3, 0(ni−3)×(nl−3)). This mapping effec-
tively maps only the position of the leader to the follower
state space. For the follower agents it holds ẑi(t) = x̂i(t),
i ∈ N−l.

When the communication is without losses, all follower
agents have access to ẑi(·|t−1) for all i ∈ N , where all data



arrived between time steps t−1 and t is cast as data from time
step t−1. However, we want that the designed control policy
u is able to achieve the goal stated in Problem 1 even in the
case of communication loss. In the context of this paper, the
communication loss is considered as an inability of an agent
to retrieve the latest shared data from another agent. More
formally, the communication loss is an inability of an agent
i at time step t to retrieve the shared data ẑj(·|t − k) from
another agent j generated at time step t − k, where k ≥ 1.
Thus, we will impose stronger assumptions on the behaviour
of the followers that will be stated in Sections IV and V.

III. CONTROL ARCHITECTURE

A. Distributed MPC Formulation

We choose to address Problem 1 using distributed MPC
where each agent solves a distributed optimal control prob-
lem for a planning horizon of N time steps and applies the
first control input during the control horizon ∆t [1]. Note that
all time steps in the control architecture are discrete t ∈ N0

and ∆t denotes the continuous time duration between two
time steps. The procedure is then repeated at every time step
for each agent.

Let x̂i(k|t) be the nominal state trajectory at time k + t,
k = 0, 1, ..., N calculated at time instant t, where x̂i(0|t) =
xi(t), governed by the following difference equation

x̂i(k + 1|t) = fi(x̂i(k|t), ui(k|t)) (5)

Each agent is provided with the state reference trajectory
at time step t until t + N which is given as xr,i(·|t) =
{xr,i(0|t), ..., xr,i(N |t)}. The references are provided by the
proposed algorithm which will be elaborated in Sections V
and IV. The control objective of each agent at time step t is
to minimize the following cost function

Ji(x̂i(·|t), ui(·|t), xr,i(·|t), N, t) =
N∑

k=0

∥x̂i(k|t)− xr,i(k|t)∥2Qi

(6)
while respecting the constraints, where the summand repre-
sents the stage cost and Qi is a positive-definite weighting
matrix. We denote also J =

∑
i∈N Ji.

We formulate the distributed optimal control problem with
respect to the objective.

Problem 2. Let the states of the agents at time t be xi(t),
i ∈ N . Given the references xr,i(·|t) and the predicted
trajectories of other agents ẑj(·|t), j ∈ N−i, the distributed
optimal control problem is formulated as

min
ui(·|t)

Ji(x̂i(·|t), ui(·|t), xr,i(·|t), N, t) (7a)

subject to

x̂i(k + 1|t) = fi(x̂i(k|t), ui(k|t)), (7b)
x̂i(k|t) ∈ Xi, (7c)
ui(k|t) ∈ Ui, (7d)
x̂i(k|t) ∈ Xi,j(ẑj(k|t)), for i ∈ N−l, j ∈ N−i, (7e)

for k = 0, 1, ..., N , for all i ∈ N .
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Fig. 1. Restricted area and side view of the constraint hC from (8)
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Fig. 2. hC from (8), for hs = 2, r = 2.5, β = 1

Set Xi denotes the set of model state constraints and Ui the
input constraints. Xi,j(ẑj(k|t)) is the set of spatiotemporal
safety constraints with respect to the other agents that will
be formulated in the next section. Note that the leader is
not subjected to the inter-agent collision constraints (7e), but
only the follower agents.

B. Spatiotemporal Safety Constraints

The desired specification on UAV movements in the 3D
space are to fly above some prescribed height and avoid
obstacles. However, in the problem of UAV landing on a
boat, we are particularly interested in the obstacles that arise
from the boat shape, equipment and its movement. These
specific obstacles surrounding the landing area on the boat
are depicted in Figure 1.

This area can be modeled as two convex areas with a
binary variable that depends on the altitude of the UAV
and determines which of the two constraints should be
enforced within the mixed-integer optimization problem [18].
However, it is of interest to model the restricted flying
area with one nonlinear continuous function such that the
usage of mixed-integer programming is avoided due to the
computational burden it can cause.

In the following considerations, we assume the landing
platform is circular with the radius r, rsafe < r is the
safety radius needed for safe landing and hs is the safety
height below which the UAV is not allowed to descent unless
above the landing platform. Let zl = [pxc

, pyc
, 0Tnf−2]

T ∈
Xf be the center of the boat landing platform and xf =
[px, py, pz, 0

T
nf−3]

T ∈ Xf be the position of the UAV.
We define the constraint function hC in a novel way as

hC(xf , zl) := pz −
hs

1 + e−β((px−pxc )
2+(py−pyc )

2−r2)
≥ 0

(8)
where β > 0 is a tuning parameter that determines the slope
of the funnel.

Requiring that hC(xf , zl) ≥ 0, the UAV will always be
above the boat position-dependent constraint function. The
boundary of the restricted area defined with hC in 3D is
visible on Fig. 2.



The spatiotemporal constraint imposed on the position of
the follower x̂i(k|t), i ∈ N−l at time step t+k, predicted at
time t, for i = 0, 1, ..., N , with respect to the future trajectory
of the leader position ẑl(k|t) is

hC(x̂i(k|t), ẑl(k|t)) ≥ 0 for all k = 0, ..., N. (9)

Therefore, we define the safe set Xi,l(ẑl(k|t)) in (7e) for all
i ∈ N−l as

Xi,l(ẑl(k|t)) := {x̂i(k|t) : hC(x̂i(k|t), ẑl(k|t)) ≥ 0} . (10)

Note that in the current formulation we assume that the
height of the landing platform is zero.

C. Inter-agent Collision Avoidance

The previous section defines the safety constraint function
that each follower enforces in its optimization problem with
respect to the leader. The inter-agent collision avoidance
condition is formulated on a set of follower agentsM = N−l

as
∥C(x̂i(k|t)− ẑj(k|t))∥ ≥ R, for j ∈M−i (11)

for k = 0, 1, ..., N , where R > 0 is the minimal
distance between the follower agents. The matrix C =
diag(1, 1, c, 0ni−3), with c > 1, determines the shape of
the super ellipsoidal set constraint such that it prevents the
collision and the downwash effect that can occur if a UAV
ends up below another.

Moreover, the condition (11) can be stated in form (3) as

hij(x̂i(k|t), ẑj(k|t)) := ∥C(x̂i(k|t)− ẑj(k|t))∥ −R ≥ 0

and the safe set Xi,j(ẑj(k|t)) in (7e) for all i ∈ M and
j ∈M−i is defined as

Xi,j(ẑj(k|t)) := {x̂i(k|t) : hij(x̂i(k|t), ẑj(k|t)) ≥ 0} .

D. EKF Predictor

In order to handle the communication losses, we equip
the agents with an Extended Kalman Filter (EKF) as an N -
step predictor of the future trajectory of the other agents.
EKF Predictor is formulated for a general nonlinear system
x+ = f(x) with linearized dynamics around a measured
state and unknown input. The N -step prediction is done by
repeating the prediction step N times in open loop.

For brevity, we do not state the EKF matrices but refer the
reader to the relevant literature [19]. The outputs of the EKF
Predictor used in the control architecture are the predicted
trajectories ẑp,i(·|t) and the prediction covariance matrices
Pp,i(·|t). The prediction covariance matrix Pp,i(k|t) provides
us with the estimate of a super ellipsoidal set determined by
its eigenvalues λk(Pp,i).

IV. RENDEZVOUS ALGORITHM

The multi-agent formulation in which we have multiple
followers is challenging due the possible inter-agent colli-
sions even in the case when all agents share their committed
trajectories. In this section, we formulate the algorithm for
multiple-follower rendezvous landing.

We assume that the landing platform is large enough to
accommodate M agents that can land simultaneously at pre-
specified positions ci ∈ Br−rsafe

relative to the center of the
landing platform. Moreover, due to the application testbed in
hand [20], we will constrain the scheme to M agents, and
additional follower agents can be included if a prioritization
procedure is included in the proposed algorithm. We state the
following assumption on the initial conditions and feasibility
that will be used to analyze the algorithm convergence.

Assumption 1. All agents at time t0 have initial conditions
xi(t0), i ∈ N such that

xi(t0) ∈ Xi,j(zj(t0)) for i ̸= l, j ∈ N−i.

Moreover, it holds that

∥ci − cj∥ > R, for all i, j ∈M, i ̸= j.

Before we state the algorithm, let us introduce a data
collection Di(t) that is available to an agent i at time step t
as Di(t) = {ẑj(·|tj)}j∈N−i

consisting of the shared future
trajectories of all other agents broadcast at time tj < t,∀j ∈
N−i.

Algorithm 1 Multiple-Follower Rendezvous Algorithm
Require: initial states xi(0) at time t = 0, landing locations

ci according to Assumption 1 for i ∈ M, a tolerance
parameter ε;

1: for each agent i ∈M do
2: update Di(t) and ẑj(·|t), j ∈ N−i using (13)
3: x̂∗i (·|t), û∗i (·|t)← solve Problem 2
4: if ∥x̂i(t)− ẑl(t) + ci∥ > ε then
5: apply û∗i (0|t)
6: broadcast x̂∗i (·|t)
7: t← t+ 1

Remark 1. An issue that can occur in the multi-agent
case with inter-agent collision avoidance in general, is that
the agents can end up in a deadlock and be prevented to
effectively find a way to navigate to the goal position. In that
case, the deadlock can be resolved by forcing the agents to
solve Problem 2 sequentially [2], [21]. This would guarantee
that each agent takes into account the current predicted
trajectory of other agents and waits until the process is
completed. Thus, the generated trajectories will not end up in
a deadlock. Note that communication in this case is required.
Therefore, Algorithm 1 requires that the first iteration of the
algorithm is done in a sequential manner and that the initial
feasibility is established.

V. CONVERGENCE

Let us consider the one-follower case of the rendezvous
landing problem, N = {l, f}, in which the leader reference
xr,l(t) is given, and the follower reference is based on the
position of the leader xr,f (t) = zl(t) that corresponds to the
center of the landing platform. In order to analyze system
behavior, we introduce an assumption on the follower’s
capability to track the leader with respect to the leader
dynamics and spatiotemporal constraints.



Assumption 2. There exists a control law κ : Xf×Xf → Uf
such that

∥x+f − z+l ∥2 ≤ ρ∥xf − zl∥2 (12)

with ρ ∈ (0, 1) and

x+f = ff (xf , κ(xf , zl))

x+l = fl(xl, ul),

zl = Hxl,

hC(xf , zl) ≥ 0

for all xf ∈ Xf , xl ∈ Xl, and ul ∈ Ul.
Assumption 2 states that for any control action the leader

takes, there exists a control law for the follower that will
reduce the distance between them in every consecutive
time step. However, in the case of communication losses,
the follower must be capable to asymptotically reduce the
distance regardless of the leader’s behaviour.

Furthermore, Assumption 2 is similar to Assumptions 4
and 6 in [22] from which the notion of incremental stability
as in [23, Def. 2.1], [24] can be elaborated. Compared to
[22], the reference zl in our case has different dynamics than
the followers’ and it does not take into account the control
action of the leader.

Referring to Problem 2, let the value function at time step
t be

VN (xf (t), zl(t)) = min
uf (·|t)

Jf (x̂f (·|t), uf (·|t), ẑl(·|t), N, t)

=

N−1∑
k=0

∥∥x̂∗f (k|t)− ẑl(k|t)∥∥2Qf

We define the region of attraction XROA
f (zl) :=

{xf ∈ Xf : VN (xf , zl) ≤ VN,max} of the MPC controller as
the set of states which can be steered to the desired leader
state zl in N or fewer steps.

The convergence result for the case of one follower is
based on ensuring that for all initial states in the region
of attraction, the value function is a Lyapunov function
decreasing at each time step.

Theorem 1 (Convergence with one follower). Let Assump-
tion 2 hold. For any VN,max ∈ R>0, there exist constants
γ ≥ 1, and N0 ∈ N, such that for all N > N0 and all initial
conditions in the region of attraction xf (0) ∈ XROA

f (zl(0)),
there exists αN ∈ R>0 such that the multi-agent system (1),
with wi = 0, i ∈ N = {l, f} satisfies

∥xf − zl∥2Qf
≤ VN (xf , zl) ≤ γ∥xf − zl∥2Qf

,

VN (x+f , z
+
l )− VN (xf , zl) ≤ −αN∥xf − zl∥2Qf

,

for all t ≥ 0. Furthermore, for all xf (0) ∈ XROA
f (zl(0))

the follower converges to the leader-dependent rendezvous
location exponentially, i.e. xf (t)→ zl(t) as t→∞.

The proof is given in Appendix A.

Remark 2. Note that the optimization problem in Prob. 2
does not use the terminal ingredients and thus they are not

used in Theorem 1, although it is a common way to prove the
stability of MPC scheme [25], [26]. In this work, we avoid
usage of the terminal ingredients by considering a sufficiently
long planning horizon N in the region of attraction XROA.
This builds upon the methodology suggested in [22], [27].
Moreover, the initial feasibility in the region of attraction is
implicitly assumed in Theorem 1 by the same principle, i.e.
by assuming that there exists N0 for which the optimization
problem in Prob. 2 is feasible for all initial conditions in
XROA. Also note that the disturbances are not considered
in the theorem.

It is straightforward to show, using the same argument as
in Theorem 1, that the leader agent will follow its reference
trajectory as well, thus achieving the objective of Problem 1.

A. Robustness to Communication Losses

In case of communication loss, the latest available shared
trajectory of the leader used as the follower reference is
shifted and the missing part of the trajectory is predicted
with the EKF predictor. If the latest time of arrival ta of
the shared trajectory is ta < t − k, 0 < k < N , then the
trajectory is shifted for k time steps and the rest is predicted
as follows

ẑi(l|t) =
{
ẑi(l + k|ta,i), for l < N − k
ẑp,i(l + k|ta,i), for l ≥ N − k (13)

for l = 0, 1, ..., N . However, the predicted trajectory has
some uncertainty such that zi(l|t) ∈ ẑp,i(l|ti)⊕Pi(l|t) where
the set Pi(l|t) := {b : ∥b∥2Pp,i(l|t) ≤ s} is determined by
the prediction covariance matrix Pp,i(l|t) and a parameter
s = −2 ln(1 − p), that depends on the chosen probability
confidence p ∈ (0, 1). In case k = N − 1 which means that
no predicted future steps are available, the data collection is
updated only with the EKF Predictor.

Remark 3. Note that the next state uncertainty can be
estimated without using EKF Predictor as zi(l + 1|t) ∈
ẑi(l|ti) ⊕ Bri where the choice of the safety radius ri
determines the conservativeness of the used set estimates.
By setting ri to

ri = max
xi∈Xi,ui∈Ui

∥x+i − f(xi, ui)∥ (14)

one can guarantee that the next state is within the ball of
the given radius. However, this is an overly conservative
approach given that the uncertainty sets grow and can be-
come very large at the end of the horizon thus preventing the
follower agents to land. In that case, the collision checking
can be restricted only for the one-step ahead prediction, i.e.

∥C(x̂i(1|t)− x̂j(1|t))∥ ≥ R+ rj , for j ∈ N−i

and use the worst case radius rj as in (14).

Theorem 2 (p-probabilistically safe landing). Let the condi-
tions of Theorem 1 hold. Given the probabilistic confidence
p ∈ (0, 1), the radius of the landing platform r, and the



radius necessary for the safe landing rsafe, if the following
condition holds

rsafe +
√
sλmax(Pp,i(t)) < r

where s = −2 ln(1 − p), then the landing is considered as
probabilistically safe with probability p.

Proof: The proof is based on the worst-case estimate
of the landing position. Given the probabilistic confidence
p and the covariance matrix Pp,i(t), the worst-case distance
from the actual landing position zl(t) and its estimate ẑl(t) is
d =

√
sλmax(Pp,i(t)). Thus, ∥zl(t)− ẑl(t)∥ = d < r−rsafe

which means that the follower applying the control input
obtained with Prob. 2 is guaranteed to land inside of the
landing platform with probability p.

The extension to the multiple-follower case is given by
the following result:

Corollary 1. Let Assumption 2 and 1 hold. Moreover, let the
conditions of Theorem 2 hold for all follower agents i ∈M.
Then, Algorithm 1 converges and all follower agents meet
on the leader landing platform without a collision.

Proof: The proof is based on two parts. First, that
the all agents converge to the landing platform and second,
that their trajectories are collision-free. Given that all stated
conditions hold there exists a feasible configuration for all
follower agents to rendezvous on the leader landing platform.
Moreover, all follower agents also satisfy the conditions
from Theorem 2, and thus there exist a feasible landing
trajectory robust to communication losses. Because each
agent is solving the optimization problem in Problem 2, the
inter-agent collision avoidance is enforced in every feasible
landing trajectory. Therefore, all agents rendezvous on the
leader landing platform without a collision.

VI. SIMULATION RESULTS

In this section we present a landing scenario with M =
6 agents. The leader is unable to communicate with the
follower agents and thus follower agents must use EKF
Predictor to estimate the position of the leader. Moreover, the
leader measurements are taken from real-world experiments
and thus have disturbances. The follower agents share their
predicted trajectories until time step k = 10 (continuous time
tc = 2s) when one of the agents (Agent f1) also loses the
communication with the rest of the agents. Then the rest
of the agents in the scenario must also predict the future
trajectory of Agent f1 and Agent f1 predicts the trajectories
of all other agents in the scenario.

The state and input constraints on the models are defined
similarly to [28, Sec.5.1]. The initial positions of follower
agents are xi(0) = [5 cos(2iπ/M), 5 sin(2iπ/M), 10, 0T6 ]

T ,
and the leader is at origin xl(0) = 06. The radius of the
whole landing platform for all agents is 5rsafe, and the safe
radius for landing is rsafe = 0.5m. The matrices Qfi =
diag(10, 10, 5, 1, 1, 1, 1, 1, 1), Ql = diag(10, 10, 10, 1, 1, 1),
thus primary penalizing the position in x and y and then in z
for quadrotors, and orientation ψ for the boat. λmax(Qfi) =
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Fig. 3. The red circle marks the boundary of the landing platform, while
the blue circles are the landing locations with safety radius rsafe = 0.5m.
The distance from the center of the platform to a landing location is 3rsafe.

10, and we pick VN,max = 240 such that γ̄ = 1.99 and
N = 20, and the region of attraction is large enough and
encompass the initial displacement with a sufficient margin.

The landing locations are equidistantly distributed as on
Fig. 3 and assigned to an agent positioned at the opposite side
diagonally. Assumption 1 is satisfied with R = 2rsafe, and
C = I3. The landing is considered safe if the conditions of
Theorem 2 hold with p = 0.95. Assuming that all agents will
have identical estimation of the landing platform position and
inter-agent collisions are handled it is sufficient to consider
the safety with respect to the outer boundary. Thus, with
p = 0.95, λmax(Pp,l(t)) < (5rsafe − 3rsafe)

2/s ≈ 0.17.
From the experimental results, λmax(Pp,l(t)) < 0.06 thus
satisfying Theorem 2. Algorithm 1 and Prob. 2 are imple-
mented with CasADi [29] and results are shown on Figures 4
and 5. All trajectories are collision-free, and the predicted
trajectory of Agent f1 by other agents and vice versa do not
induce much conservativeness to Algorithm. This is mainly
because the first part of the trajectory is generated using the
shift mechanism as in (13) and the small eigenvalues of the
covariance matrices compared to the considered safety radii.

VII. CONCLUSION
In this paper, we presented a rendezvous algorithm based

on the leader-follower scheme and distributed MPC with
robustness to communication losses. The algorithm is de-
signed for autonomous landing of multiple quadrotors on
moving unmanned surface vehicles. The convergence analy-
sis of the algorithm is presented and the effectiveness of the
proposed algorithm is demonstrated with the simulation of a
landing scenario.In the future work, we aim to include the
disturbances in the analysis and quantify the upper bounds
such that the convergence is preserved. Moreover, it will be
interesting to include learning methods in order to speed-up
the computation.

APPENDIX A: PROOF OF THEOREM 1
Proof: The proof proceeds in two parts. The first part

shows the boundedness of VN (xf (t), zl(t)) for all t ≥ 0,
and the second part proves that the value function decreases
for all states in the region of attraction at every time step.

By the definition of the value function

VN (xf (t), zl(t)) ≥ ∥x̂f (0|t)− ẑl(0|t)∥2Qf

= ∥xf (t)− zl(t)∥2Qf

Moreover, for xf (t) ∈ XROA
f (zl)

∥xf (t)− zl(t)∥2Qf
≤ VN (xf (t), zl(t)) ≤ VN,max
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Fig. 4. 3D view of a landing scenario at discrete time steps t = {0, 5, 10, 13, 17, 23} with ∆t = 0.2s between two time steps. The followers are unable
to communicate with the leader and a loss of communication with Agent f1 occurs during the experiment at t = 10. Agent f1 is marked in orange.
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Fig. 5. Left: Top view of the second situation at t = 5, when it might
look from the perspective view that the agents are too close, shows that the
inter-agent collision avoidance constraint is enforced. Right: Final situation
at t = 23. hC is removed for better visibility.

thus, there exists γ̄ ≥ 1 for which γ̄ ∥xf (t)− zl(t)∥2Qf
=

VN,max and γ ≥ γ̄ ≥ 1 such that

VN (xf (t), zl(t)) ≤ VN,max ≤ γ∥xf (t)− zl(t)∥2Qf

The second part of the proof uses the contraction of the
error from Assumption 2. Let a feasible (suboptimal) input
sequence for the next time step be ũf (·|t+ 1), defined as

ũf (k|t+1) =

{
u∗f (k + 1|t) for k = 0, 1, ..., N − 1

κ(x̂∗f (N |t), ẑl(N |t)) for k = N

consisting of the shifted optimal input from the previous step
and some appended uNf = κ(x̂∗f (N |t), ẑl(N |t)) ∈ Uf that
satisfies Assumption 2. Assuming there are no disturbances,
then xf (t+ 1) = x̃f (0|t+ 1) = ff (xf (t), u

∗
f (0|t)) and

x̃f (k|t+ 1) =

{
x̂∗f (k + 1|t) for k < N

ff (x̂
∗
f (N |t), uNf ) for k = N

Moreover, due to Assumption 2

∥x̃f (N |t+ 1)− ẑl(N |t+ 1)∥2 ≤ ρ
∥∥x̂∗f (N |t)− ẑl(N |t)∥∥2

and

∥x̃f (N |t+ 1)− ẑl(N |t+ 1)∥2Qf

≤ ρλmax(Qf )

λmin(Qf )

∥∥x̂∗f (N |t)− ẑl(N |t)∥∥2Qf

Because VN (xf (t), zl(t)) ≤ γ∥xf (t) − zl(t)∥2Qf
, then

∀ k ≥ 1, there exist N > 1 and γ ≥ γ̄ ≥ 1 such that

∥x̂∗f (k|t)− ẑl(k|t)∥2Qf
≤ VN (xf (t), zl(t))

N

≤ γ

N
∥xf (t)− zl(t)∥2Qf

Let us consider the the value function at time step t+1, then

VN (xf (t+ 1), zl(t+ 1))

≤
N∑

k=0

∥x̃f (k|t+ 1)− ẑl(k|t+ 1)∥2Qf

=

N−1∑
k=0

∥x̃f (k|t+ 1)− ẑl(k|t+ 1)∥2Qf

+ ∥x̃f (N |t+ 1)− ẑl(N |t+ 1)∥2Qf

=

N∑
k=1

∥∥x̂∗f (k|t)− ẑl(k|t)∥∥2Qf

+ ∥x̃f (N |t+ 1)− ẑl(N |t+ 1)∥2Qf



=

N∑
k=0

∥∥x̂∗f (k|t)− ẑl(k|t)∥∥2Qf
−
∥∥x̂∗f (0|t)− ẑl(0|t)∥∥2Qf

+ ∥x̃f (N |t+ 1)− ẑl(N |t+ 1)∥2Qf

= VN (xf (t), zl(t))− ∥xf (t)− zl(t)∥2Qf

+ ∥x̃f (N |t+ 1)− ẑl(N |t+ 1)∥2Qf

≤ VN (xf (t), zl(t))− ∥xf (t)− zl(t)∥2Qf

+ ρ
γ

N

λmax(Qf )

λmin(Qf )
∥xf (t)− zl(t)∥2Qf

≤ VN (xf (t), zl(t))− αN ∥xf (t)− zl(t)∥2Qf

where αN := 1 − ρ γ
N

λmax(Qf )
λmin(Qf )

. Thus by choosing N >

N0 := γ̄
λmax(Qf )
λmin(Qf )

, αN > 0. Finally, the value function
VN (xf (t), zl(t)) is decreasing for all t ≥ 0.

Using the decrease property and the boundedness in the
region of attraction XROA

f (zl) proven in the first part,
VN (xf (t), zl(t)) is a Lyapunov function in XROA

f (zl). Thus,
the error ∥xf (t)− zl(t)∥ exponentially goes to zero, which
concludes the proof.
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