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Abstract

In this thesis, we study trajectory tracking and prediction-based control of
underactuated unmanned aerial and surface vehicles.

In the first part of the thesis, we examine the trajectory tracking using prescribed
performance control (PPC) assuming that the model parameters are unknown.
Moreover, due to the underactuation the original PPC is redesigned to accommodate
for the specifics of the considered underactuated systems. We prove the stability
of the proposed control schemes and support it with numerical simulations on the
quadrotor and boat models. Furthermore, we propose enhancements to kinodynamic
motion-planning via funnel control (KDF) framework that are based on rapidly-
exploring random tree (RRT) algorithm and B-splines to generate the smooth
trajectories and track them with PPC. We conducted real-world experiments and
tested the advantages of the proposed enhancements to KDF.

The second part of the thesis is devoted to the rendezvous problem of autonomous
landing of a quadrotor on a boat based on distributed model predictive control
(MPC) algorithms. We propose an algorithm that assumes minimal exchange of
information between the agents, which is the rendezvous location, and an update
rule to maintain the recursive feasibility of the landing. Moreover, we present
a convergence proof without enforcing the terminal set constraints. Finally, we
investigated a leader-follower framework and presented an algorithm for multiple
follower agents to land autonomously on the landing platform attached to the
leader. An agent is equipped with a trajectory predictor to handle the cases of
communication loss and avoid the inter-agent collisions. The algorithm is tested in a
simulation scenario with the described challenges and the numerical results support
the theoretical findings.





Sammanfattning

I denna avhandling studerar vi bansp̊arning och prediktionsbaserad styrning av
underaktuerade obemannade luft- och ytfarkoster.

I den första delen av avhandlingen undersöker vi bansp̊arningen med hjälp av
föreskriven prestationskontroll (PPC) förutsatt att modellparametrarna är okända.
P̊a grund av underaktueringen i systemen vi betraktar har den ursprungliga PPC:n
dessutom designats om för att specifikationerna för dessa system. Vi bevisar att
de föreslagna regulatorerna stabiliserar systemet och validerar dem med numeriska
simuleringar p̊a b̊ade quadrotor- och b̊atmodellen. Dessutom föresl̊ar vi förbättringar
av kinodynamisk rörelseplanering via ramverk för trattkontroll (KDF) som är
baserade p̊a algoritmen för snabbutforskande slumpmässiga träd (RRT) och B-
splines för att generera släta banor och sp̊ara dem med PPC. Vi genomförde
fysikaliska experiment och validerade fördelarna med de föreslagna förbättringarna
av KDF.

Den andra delen av avhandlingen ägnas åt mötesproblemet med autonom land-
ning av en quadrotor p̊a en b̊at baserat p̊a algoritmer för distribuerad modell-
prediktiv styrning (MPC). Vi föresl̊ar en algoritm som förutsätter ett minimalt
utbyte av information mellan agenterna, nämligen mötesplatsen, och en uppda-
teringsregel för att upprätth̊alla den rekursiva genomförbarheten av landningen.
Dessutom presenterar vi ett konvergensbevis utan att upprätth̊alla begränsningar i
slutuppsättningen. Slutligen undersökte vi ett ledare-följare ramverk och presenter-
ade en algoritm där flera följaragenter kan autonomt landa p̊a en plattform som
sitter fast i ledaren. En agent är utrustad med en banprediktor för att hantera
fall av kommunikationsbortfall samt för att undvika kollision med andra agenter.
Algoritmen testas i ett scenario med de beskrivna utmaningarna och de numeriska
resultaten överensstämmer med de teoretiska resultaten.
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Chapter 1

Introduction

The last decade has seen an unprecedented growth in commercially available un-
manned aerial vehicles (UAV). By the current regulations, at least in the European
Union, their use requires a registration and a remote pilote licence for UAVs weight-
ing less than 25 kg. The operation is restricted within the visual line of sight (VLOS),
while the beyond visual line of sight (BVLOS) usage is still legally available only to
special categories of users [1].

The commercially available UAVs are remotely operated and can include some
basic features that resemble autonomous behaviors such as autonomous take-off
and landing, following the remote controller/pilot, collision avoidance, return to the
take-off position in case of low battery or performing pre-programmed missions.

Although a clear standardized classification of levels of autonomy for UAVs does
not exist yet, based on [2] and analogous to the widely accepted SAE classification
for autonomous cars [3], the listed features still satisfy only lower levels or at most
the second level of autonomy, while fully autonomous operation or coordination and
cooperative missions of several agents that are still subject to development, belong
to the higher levels of autonomy. Therefore, there are still open research questions in
the control of a single autonomous agent as well as coordination of several of them,
which we will refer in the further discussions as a multi-agent system. Developing
the control strategies for more autonomous and intelligent decision making will
broaden the spectrum of the applicability of these multi-agent systems.

The current applications include video and photography, entertainment, audiovi-
sual inspection, agriculture, delivery, defense, search and rescue, public safety and
others. Due to the constrained amount of payload and energy source (battery, fuel)
they can carry, the flight time is limited and for long-duration flights refueling or
battery exchange is needed. These support tasks can be automated [4] with auxiliary
machinery and allow for higher operation autonomy of the unmanned system during
a specific task [5]. The continuous operation can also be enabled with several UAVs
collaborating together with the support of one or more ground control stations or
unmanned surface vehicles (USV) such as a car or a mobile ground robot on the
land or a vessel on the water.

1



2 Introduction

Figure 1.1: Examples of cooperative multi-domain operations with manned or un-
manned agents. SpaceX rocket landing on the autonomous drone ship (USV), Boeing
UAV conducting aerial refueling of an aircraft, Swedish and US marines using a UAV
and ship radars for surveillance. Image credit: SpaceX/Boeing/DoD

Some of the notable examples of the cooperative multi-domain (air, land, sea)
operations with manned or unmanned agents include SpaceX rocket landings on
the ship, Boeing UAV for the aerial refueling, or surveillance for public safety and
are depicted on Fig 1.1.

The development of the mentioned technologies has enabled state actors to
further strengthen the capabilities in terms of public safety, firefighting and search
and rescue (SAR) missions. However, since most of the current unmanned agents
are still remotely operated or require active human assistance during the mission,
their service drains more resources and is subject to human errors or suboptimal
performance. Therefore, increasing the autonomy capabilities of unmanned systems
and optimality of their performance has a potential of saving human lives and
enhancing the well-being of a society.

In terms of the multi-agent system coordination we can distinguish three ap-
proaches based on the location of execution of the control algorithm and shared
information i.e. centralized, the computation is done at one location and all in-
formation is available to the controller, decentralized, every agent is executing its
part of the control algorithm and controllers are not sharing the information with
other agents, and distributed control, in which the computation is divided and
the information is shared between the agents [6]. The focus of multi-agent system
research has been on developing the distributed algorithms to solve general tasks
such as consensus or renzdezvous, in which all agents converge to a certain point in
space, and formation, in which agents converge to a geometric shape and/or move
together in that formation. Most of the distributed approaches considered agents
with simple dynamics, with auxiliary low level controllers to ensure the trajectory
tracking of the generated trajectories.

In our work we focus on the multi-agent system consisting of a USV, and one or
more quadrotor UAVs, that we will refer as UAVs in the further discussions. These
agents have nonlinear complex underactuated dynamics with parameters that can
change during the execution and are subject to external disturbances such as winds
and waves. The motivating problem we consider is the autonomous landing scenario
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Figure 1.2: The motivating application is a scenario where drones must be able to
rendezvous and land on a moving boat.

of a UAV on a moving USV. This particular task allows us to explore almost all
aspects of the autonomous cooperative multi-agent behavior, such as trajectory
tracking, robustness and disturbance rejection, collision avoidance, and distributed
cooperative control. An illustration of the motivating problem is depicted in Fig. 1.2.

Motivated by the above discussion, the approach in the control and coordination
of these agents can be twofold. The distributed control algorithms can be developed
using the simple dynamics and an auxiliary controller can be added to fulfill
the specified performance requirements, and, the distributed control algorithm
can use the full model dynamics and prediction-based techniques to enhance the
performance. Therefore, this thesis aims to develop trajectory tracking control
laws for given trajectories and performance specifications, and prediction-based
distributed algorithms for rendezvous.

1.1 Related Work

The related work is divided in two subsections covering: the trajectory tracking
and prescribed performance control (PPC), and prediction-based rendezvous using
distributed model predictive control.

1.1.1 Trajectory tracking and PPC
Unmanned aerial vehicles (UAV)

UAV systems are highly nonlinear, underactuated and model parameters may vary
during the flight. This makes the control design even more demanding, especially
in scenarios when UAVs need to meet performance and safety specifications. Such
specifications are vital in landing scenarios on other USVs.

There already exists an extensive amount of works in literature concerning
stabilization and trajectory tracking control of quadrotors. The early works con-
sider proportional-integral-differential (PID) controllers [7–9], which is designed
on simplified model excluding cross-coupling in attitude dynamics and has limited
performance in the presence of strong perturbations, and linear-quadratic regula-
tor (LQR) [10–12], whose limitations are due to linearization and requirement of
model knowledge. Advanced control methods such as backstepping [13, 14] and
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sliding-mode control [15] deliver satisfactory tracking performance but still require
model knowledge. Sliding-mode control is known for introducing chattering effect
and improvements are made using adjusted boundary-layer sliding control [16, 17].
Adaptive control based on backstepping is derived in [18] and L1 adaptive control is
used for aggressive flight maneuvers in [19]. Flatness-based control is employed in
[20, 21], and H∞ controller in [22]. With the increase of available computational
power in embedded devices, Model predictive control (MPC) became very popular
due its ability to handle state and input constraints and optimize the trajectory
online [23, 24]. For handling the disturbances, various wind estimation model-based
and neural network methods have been applied [25, 26].

However, most of these works focus on model-based approaches or the sta-
bility can only be shown around linearized equilibrium points. Furthermore, a
significant property that lacks from the related literature on quadrotor control is
tracking/stabilization with predefined transient and steady-state specifications, such
as overshoot, convergence speed or steady state error. Such specifications can encode
time and safety constraints, which are crucial when it comes to physical autonomous
systems, and especially UAVs.

Unmanned surface vehicles (USV)

The trajectory tracking problem for surface vehicles or vessels has been extensively
studied the last century and a nice overview is given in [27]. We consider an
underactuated vessel with 3 degrees of freedom (DoF), i.e. the position in R2 and
orientation, and only two control inputs, for which the trajectory tracking problem
cannot be solved using linear systems theory. The classical approach is to steer the
vessel along a path using the control of forward velocity and turning [28]. In [29, 30],
the authors developed nonlinear Lyapunov-based controllers for path following and
trajectory tracking for the considered underactuated vehicles.

Another approach is to introduce a change of frame, and design the nonlinear
controller in the new frame. The reference frame is usually chosen as the Serret-
Frenet frame and using Lyapunov direct method and backstepping the path-following
can be ensured [31, 32]. However, this type of controllers assume a constant forward
velocity which is a drawback. Another coordinate transformation is utilized in [33]
together with backstepping to stabilize the error dynamics and ensure trajectory
tracking.

More recently, MPC has been used for the trajectory tracking [34–36] and
autonomous docking of USVs [37]. However, most of the controllers in the literature
assume the knowledge of dynamical model and parameters. Neural networks have
been used in [38] in a rare model-free approach to this problem while prescribed
performance has been used for underwater underactuated vehicles in [39]. In the
latter, authors consider unicycle-like underwater vehicle that with the neglection
of the vertical dimension corresponds to the 3DoF USV. The challenges with this
control scheme are control input constraints and obtaining the reference trajectories
that the agent is able to track with respect to the given constraints. Therefore, we
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focus on developing kinodynamic motion planning and funnel control (KDF) [40]
with respect to the input constraints for the considered 3DoF USV model.

1.1.2 Prediction-based rendezvous

Landing scenarios and agents coordination have been explored in [41–44]. The
problem of safely landing UAVs on USVs while they are moving at high speeds to
ensure agents rendezvous simultaneously has been studied in [45]. The rendezvous
problem is challenging due to several reasons, for example, sudden communication
losses or strong disturbances acting on the agents can lead to disastrous consequences.
Moreover, even the basic tasks to determine if the rendezvous is possible or not and
what strategy to employ when the rendezvous location has to be updated can be
complex.

MPC has often been used in such applications because of its ability to explicitly
include complex system dynamics as well as diverse state and input constraints
directly in the computation of the control inputs. A question that has not been
directly addressed in previous research is that of efficient communication strategies
between the agents. Instead, previous distributed solutions have exchanged all state
and trajectory information between the agents at each sample time, [46].

The review [47] gives an overview of several approaches to distributed implemen-
tation of model predictive control. Our focus is on dynamically decoupled systems
that can be coupled with performance criteria. In [48], the authors assume that each
agent knows the system dynamics of all of its neighbors to compute their assumed
optimal state trajectories. The stability is established with the requirement that the
mismatch from the actual trajectories of the agent’s neighbors is small. A similar
approach was taken in [49], in which the stability is imposed by requiring that the
calculated trajectories of each agent do not deviate from those calculated in the
previous time step. Sequential optimization of the local cost functions can, under
some assumptions, guarantee stability and convergence to the common cooperative
goal, as shown in [50].

However, most of the mentioned research assumes a periodical exchange of
information between the agents and recalculation of the control inputs at every
sampling time instance. The recalculated control inputs usually do not generate
much different state trajectories compared to the ones from the previous time
steps, especially if the model is very accurate and disturbances acting on the
system are small but are critical for feasibility requirements, see, e.g. [51]. The
aperiodic (distributed) MPC can be implemented using the event-triggered or self-
triggered strategy [52]. The triggering conditions can be cost-based, then the optimal
control problem is recalculated when the cost is not guaranteed to decrease [53].
Moreover, they can be trajectory-based and recalculated when the trajectories
deviated significantly compared to the previous ones and the feasibility of the overall
problem might be compromised [54], [55]. However, the triggering conditions for
nonlinear systems are based on the worst-case trajectory prediction that involves
Lipschitz continuity assumption and Lipschitz constant, which for the systems with
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fast and agile dynamics, like quadrotors, can lead to very conservative triggering
conditions to maintain feasibility and stability.

Another aspect to consider are unpredicted strong disturbances that lead to
infeasible landing. The question is then how to proceed and how to formulate the
alternative safe strategy. A conventional approach in dealing with the disturbances
is to design a strong disturbance rejection controller or, with MPC, to design a
tube-based MPC that ensures the trajectories will stay in some safe set given the
upper bound of the disturbance [56–59].

In the case of communication loss, we want to have the agent equipped with
an alternative strategy to proceed with landing. In [60], the authors propose a
vision-based framework with the state estimation for the ground vehicle considered
as a moving target. Estimation-based control protocol proposed in [61] uses only
local observations of the state of the neighboring agents for rendezvous and flocking
control. In another estimation-based protocol, authors in [62] use particle filter to
predict aircraft trajectories. Prediction-based navigation in a decentralized event-
based scheme is studied in [63].

Moreover, learning-based prediction approaches for multi-agent systems in the
recent years became very popular area of research [64–68]. Unfortunately, most of
these approaches require extensive amount of data for the training purpose and direct
transferability to our particular application is unknown. In [69] authors combine
MPC with online learning a stochastic model of a driver or an agent.

1.2 General Problem Formulation

The general objectives of this thesis are to develop trajectory tracking control
laws independent of model parameters for underactuated unmanned vehicles and
prediction-based rendezvous algorithms with application to the autonomous landing
scenario. Underactuated systems are systems that have fewer control inputs than
configuration variables. More formally, for the classical mechanical systems obeying
to Newtonian mechanics, the underactuated systems can be defined as following.

Definition 1.1. [70] A second-order dynamical control system described by the
equations

q̈ = f(q, q̇,u, t)

where q is the configuration vector of positions, q̇ is the vector of velocities, is fully
actuated in state x = (q, q̇) and time t if the resulting map f is surjective: for every
q̈ there exists a u which produces the desired response. Otherwise it is underactuated
(at state x at time t).

The dynamics of the considered underactuated unmanned aerial and surface
vehicles are heterogeneous and can be modeled separately in state space as a
nonlinear system with additive disturbances

ẋ = f(x,u) +w, (1.1)
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where x ∈ X ⊆ Rn, u ∈ U ⊆ Rm and w ∈ W ⊂ Rn.
In the first part, we address the problem of performance prescribed control for

the underactuated systems.

Problem 1.1. Consider the underactuated system (1.1). Given the reference tra-
jectory and prescribed performance functions in time t ≥ 0, design the control law
u that ensures the trajectory tracking and all errors remain inside of the prescribed
funnels.

In the second part of the thesis, we focus on rendezvous algorithms with applica-
tion to the autonomous landing. Agents in the landing scenario can be considered
as a multi-agent system. In general, we consider M agents adhering to the nonlinear
dynamics without dynamical couplings

ẋi = fi(xi,ui) +wi, i = 1, ...,M (1.2)

Problem 1.2. Consider the system (1.2). Design the distributed control laws ui
that fulfill the rendezvous task, if possible. If this is not possible, find a safe solution
online.

The second problem can be further divided into subproblems with respect to
the amount of information that can be shared between the agents and the type
of failure that can occur during the landing such as communication loss, wind or
other type of unpredictable disturbance that prevents the landing to be successful.
Therefore, the subproblems include

1. to determine the necessary amount of information to be shared between agents
for the successful rendezvous,

2. to detect a failure and utilize an alternative control law online to preserve the
safety of the multi-agent system while, potentially, sacrificing the performance.

1.3 Thesis Outline and Contributions

In this section, we provide the thesis outline and state the contributions of the
each chapter. In Chapter 2 we introduce the notation, experimental platforms and
preliminaries used throughout the thesis. The preliminaries include dynamical control
systems, model predictive control, prescribed performance control and distributed
control. The thesis is further divided into four main chapters that deal with trajectory
tracking for underactuated unmanned aerial and surface vehicles, and rendezvous
algorithms based on distributed predictive control.

Chapter 3

We consider the problem of trajectory tracking for underactuated quadrotors with
unknown model parameters. The proposed control protocol is based on the prescribed
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performance control (PPC) methodology with the necessary design modifications
due to the underactuation of the quadrotor system. The stability analysis guarantees
that the tracking errors remain inside of designer-specified time-varying functions,
achieving prescribed performance independent from the control gains’ selection. The
results presented in this chapter are based on:

• C1: Dženan Lapandić, Christos K. Verginis, Dimos V. Dimarogonas and
Bo Wahlberg, ”Robust Trajectory Tracking for Underactuated Quadrotors
with Prescribed Performance”, 61st IEEE Conference on Decision and Control
(CDC), Cancún, Mexico, 2022.

Chapter 4

This chapter presents an improved kinodynamic motion planning via funnel control
(KDF) with design modifications to accommodate for underactuated unmanned
surface vehicle (USV). The considered USV has the input saturation and the
proposed control protocol based on prescribed performance guarantees stability.
KDF takes into account the desired velocity and acceleration which is determined
by the input limitations. The trajectory is generated using KDF-RRT algorithm
with the proposed smoothening procedure. This chapter is based on:

• J1: Dženan Lapandić, Christos K. Verginis, Dimos V. Dimarogonas and Bo
Wahlberg, ”Kinodynamic Motion Planning via Funnel Control for Underac-
tuated Unmanned Surface Vehicle”, IEEE Transactions on Control Systems
Technology, 2023. (To be submitted)

Chapter 5

In this chapter we investigate the rendezvous problem for the autonomous cooperative
landing of an unmanned aerial vehicle (UAV) on an unmanned surface vehicle (USV).
The agents are heterogeneous, nonlinear and dynamically decoupled but share a
common cooperative rendezvous task. The underlying control scheme is based on
distributed Model Predictive Control (MPC). The main contribution is a rendezvous
algorithm with an online update rule of the rendezvous location. The algorithm
only requires the agents to exchange information when they can not guarantee to
rendezvous. Hence, the exchange of information occurs aperiodically, which reduces
the necessary communication between the agents. We prove that the algorithm
guarantees recursive feasibility and asymptotic stability. This chapter is partly based
on:

• C2: Dženan Lapandić, Linnea Persson and Bo Wahlberg, ”Aperiodic Com-
munication for MPC in Autonomous Cooperative Landing” , 7th IFAC Con-
ference on Nonlinear Model Predictive Control (NMPC), Bratislava, Slovakia,
2021.
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Chapter 6

We consider the problem of autonomous cooperative landing in a leader-follower
framework. We propose a distributed model predictive control (DMPC) based
algorithm with a predictor in a scenario of communication loss during the landing
of an unmanned aerial vehicle (UAV) on a moving unmanned surface vehicle (USV).
The algorithm is executing DMPC with the exchange of predicted trajectories
between the agents at a sufficient rate. In the case of loss of communication, and
given the sensor setup, agents are predicting the trajectories of other agents based
on the output measurements and prior information as the reference input to DMPC.
During the landing the follower is tasked with avoidance of obstacles modeled with
a nonlinear non-convex function. This chapter is partially based on:

• C3: Dženan Lapandić, Dimos V. Dimarogonas and Bo Wahlberg, ”Prediction-
Based Leader-Follower Rendezvous in Case of Communication Loss”, 62nd
IEEE Conference on Decision and Control, Singapore, 2023. (Submitted)

Chapter 7 presents the outline of the future work and concludes the thesis.





Chapter 2

Background

In this chapter we introduce the notation and essential background for the contribu-
tions presented in the thesis. Furthermore, we present the experimental platforms
that are in the focus of our research.

2.1 Notation

The general notation used throughout the thesis is introduced in this section. We
may introduce additional notation in the subsequent chapters if necessary.

R denotes the set of real numbers, while Rn is the n-dimensional real vector
space. R≥0 and R>0 denote the set of non-negative and positive real numbers,
respectively. We use P � 0 to denote that a matrix P ∈ Rn×n is positive definite.
The notation ‖x‖ is used as the Euclidean norm of a vector x ∈ Rn defined by
‖x‖ :=

√
xTx, where xT is the transpose of x. The one-norm of a vector x ∈ Rn is

‖x‖1 :=
∑n
i=1 |xi|, where |xi| is the absolute value of xi which is the i-th element of

the vector x. In general, the p-norm, for p ≥ 1 is defined as ‖x‖p := (
∑n
i=1 |xi|p)

1
p .

The infinity norm is defined as ‖x‖∞ := max (|x1|, ..., |xn|). We define ‖x‖P as a
weighted norm of x, where ‖x‖P =

√
xTPx.

We define special orthogonal group SO(n) of dimension n as following

SO(n) = {R ∈ Rn×n : RRT = In,detR = 1}

and In ∈ Rn×n is the identity matrix. The notation λmin(Q) and λmax(Q) are used
to denote the minimal and maximal eigenvalues of the matrix Q. In some cases we
might denote vectors or matrices with not only bold letters but those cases will be
noted throughout the thesis.

We denote the system state trajectories with x(t), nominal state trajectories
with x̂(t) and optimal state trajectories with x̂∗(t).

11
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2.2 Dynamical Control Systems

In general, we consider the dynamical control systems modeled by ordinary differen-
tial equations which together with an initial condition of the system are defined as
the initial value problem (IVP)

ẋ(t) = f(x(t),u(t), t), x(0) = x0 (2.1)

where t ∈ R≥0, x(t) ∈ Rn, u(t) ∈ Rm, f : Rn × Rm × R≥0 → Rn.
The goal is to design feedback control laws u(x, t) to satisfy some complex

requirements. Then the initial value problem reduces to

ẋ = g(x, t), x0 = x(t0). (2.2)

where g : Rn × R≥0 → Rn.
A function f : Rn×Rm → Rn is called Lipschitz continuous in Rn, if there exists

a constant Lf , 0 < Lf <∞ such that

‖f(x1,u)− f(x2,u)‖ ≤ Lf ‖x1 − x2‖ , ∀x1,x2 ∈ Rn,∀u ∈ Rm.

First, we introduce basic concepts of stability and Lyapunov’s method.

Definition 2.1. [71, Definition 3.1] Let f(x) be a locally Lipschitz function defined
over a domain D ⊂ Rn, which contains the origin, and f(0) = 0. The equilibrium
point x = 0 of ẋ = f(x) is

• stable if for each ε > 0 there is δ(ε) > 0 such that

‖x(0)‖ < δ =⇒ ‖x(t)‖ < ε, ∀t ≥ 0

• unstable if it is not stable.

• asymptotically stable if it is stable and δ can be chosen such that

‖x(0)‖ < δ =⇒ lim
t→∞

x(t) = 0.

Theorem 2.1. [71, Theorem 3.3] Let f(x) be a locally Lipschitz function defined
over a domain D ⊂ Rn, which contains the origin, and f(0) = 0. Let V (x) be a
continuously differentiable function defined over D such that

V (0) = 0 and V (x) > 0 for all x ∈ D with x 6= 0 (2.3)

V̇ (x) ≤ 0 for all x ∈ D (2.4)
Then, the origin is a stable equilibrium point of ẋ = f(x). Moreover, if

V̇ (x) < 0 for all x ∈ D with x 6= 0 (2.5)

then origin is asymptotically stable. Furthermore, if D = Rn, (2.3) and (2.5) hold
for all x 6= 0, and

‖x‖ → ∞ =⇒ V (x)→∞
then the origin is globally asymptotically stable.
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A continuously differentiable function V (x) satisfying (2.3) and (2.4) is called a
Lyapunov function.

We state some preliminaries on dynamical systems from [72] that will be used in
Chapters 3 and 4.

Theorem 2.2 (Existence and uniqueness of solutions). [72, Theorems 2.1.1(i),
2.1.3] Let Ω be an open set in Rn × R≥0. Consider a function g : Ω → Rn that
satisfies the following conditions:

1. For every x ∈ Rn, the function t→ g(x, t) defined on

Ωx := {t : (x, t) ∈ Ω} (2.6)

is measurable. For every t ∈ R≥0, the function x→ g(x, t) defined on

Ωt := {x : (x, t) ∈ Ω} (2.7)

is continuous.

2. For every compact S ⊂ Ω, there exist constants CS , LS such that

‖g(x, t)‖ ≤ CS , ‖g(x, t)− g(y, t)‖ ≤ LS ‖x− y‖ ,∀(x, t), (y, t) ∈ S

Then the initial value problem (2.2) for some (x0, t0) ∈ Ω, has a unique and local
solution defined in [t0, tmax), with tmax > t0, such that (x(t), t) ∈ Ω,∀t ∈ [t0, tmax).

Theorem 2.3 (Maximal solutions). [72, Theorem 2.1.4] Let the conditions of
Theorem 2.2 hold in Ω and let tmax > t0 be the supremum of all times τ such that
the initial value problem (2.2) has a solution x(·) defined in [t0, τ). Then, either
tmax =∞ or

lim
t→t−max

[
‖x(t)‖+ 1

d((x(t), t), ∂Ω)

]
=∞, (2.8)

where d is the distance of a point p ∈ Rn to a set A, defined as d(p, A) :=
inf
y∈A
{‖p− y‖}.

Furthermore, we introduce concepts of boundedness. Let us consider a system
similar to (2.1),

ẋ = f(x, t), x(t0) = x0 (2.9)

but where f : D × R≥0 → Rn is piecewise continuous in t and locally Lipschitz x,
and x ∈ D, where D ⊂ Rn is a domain that contains the origin.

Definition 2.2. [71, Definition 4.1]

• A scalar continuous function α(r), defined for r ∈ [0, a), belongs to class K if
it is strictly increasing and α(0) = 0. It belongs to class K∞ if it is defined for
all r ≥ 0 and α(r)→∞ as r →∞.
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• A scalar continuous function β(r, s), defined for r ∈ [0, a) and s ∈ [0,∞),
belongs to class KL if, for each fixed s, the mapping β(r, s) belongs to class K
with respect to r and, for each fixed r, the mapping β(r, s) is decreasing with
respect to s and β(r, s)→ 0 as s→∞.

Definition 2.3. [71, Definition 4.3] The solutions of (2.9) are

• uniformly bounded if there exists c > 0, independent of t0, and for every
a ∈ (0, c), there is β > 0, dependent on a but independent of t0, such that

‖x(t0)‖ ≤ a =⇒ |‖x(t)‖ ≤ β, ∀t ≥ t0 (2.10)

• globally uniformly bounded if (2.10) holds for arbitrarily large a.

• uniformly ultimately bounded with ultimate bound b if there exists a positive
constant c, independent of t0, and for every a ∈ (0, c), there is T ≥ 0, dependent
on a and b but independent of t0, such that

‖x(t0)‖ ≤ a =⇒ |‖x(t)‖ ≤ b, ∀t ≥ t0 + T (2.11)

• globally uniformly ultimately bounded if (2.11) holds for arbitrarily large a.

Theorem 2.4. [71, Theorem 4.4] Let D ⊂ Rn be a domain containing Bµ = {‖x‖ ≤
µ} and V (x) be a continuously differentiable function such that

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖) (2.12)

∂V

∂x
f(x, t) ≤ −W3(x), ∀x ∈ D with ‖x‖ ≥ µ, ∀t ≥ 0 (2.13)

where α1 and α2 are class K functions and W3(x) is a continuous positive definite
function. Choose c > 0 such that Ωc = {V (x) ≤ c} is compact and contained in D
and suppose that µ < α−1

2 (c). Then, Ωc is positively invariant for the system (2.9)
and there exists a class KL function β such that for every initial state x(t0) ∈ Ωc,
the solution of (2.9) satisfies

‖x(t)‖ ≤ max{β(‖x(t0)‖, t− t0), α−1
1 (α2(µ))}, t ≥ t0 (2.14)

If D = Rn and V (x) is radially unbounded, then (2.14) holds for any initial state
x(t0), with no restriction on how large µ is.

2.3 Unmanned Vehicles as Dynamical Control Systems

In this section we present the unmanned vehicles of interest and briefly summarize
the derivation of their models to the form of (2.1).
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Figure 2.1: The world-fixed inertial frame and body-fixed frame.

2.3.1 Quadrotor
The quadrotor is modeled as a rigid body with 6 degrees of freedom (DoF). Before we
start with the derivation of the model equations, it is useful to define the coordinate
frames. We define a world-fixed inertial frame W and a body-fixed frame B as
depicted on Fig. 2.1.

The rotation matrix RWB ∈ SO(3) that rotates the coordinates of a point from
frame B to frame W is chosen according to the ZY X Tait-Bryan convention, which
means that the rotation matrix is a product of three consecutive rotations around
the axes Z, Y and X determined by the Euler angles ψ, θ, φ known as yaw-pitch-roll
angles.

RWB(η) = Rz,ψ(ψ)Ry,θ(θ)Rx,φ(φ)

RWB(η) =

yawcosψ − sinψ 0
sinψ cosψ 0

0 0 1


pitch cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ


roll1 0 0

0 cosφ − sinφ
0 sinφ cosφ


=

cosψ cos θ cosψ sin θ sinφ− sinψ cosφ cosψ sin θ cosφ+ sinψ sinφ
sinψ cos θ sinψ sin θ sinφ+ cosψ cosφ sinψ sin θ cosφ− cosψ sinφ

− sin θ cos θ sinφ cos θ cosφ


where η = [φ, θ, ψ]T ∈ T = (−π2 ,

π
2 ) × (−π2 ,

π
2 ) × (−π, π) are the Euler angles

compactly written as a vector. Rz,ψ : (−π, π)→ SO(3), Ry,θ : (−π2 ,
π
2 )→ SO(3),

Rx,φ : (−π2 ,
π
2 )→ SO(3) are the respective rotation matrices.

We start the derivation with the Newton-Euler equation for a rigid body [73][
mI 0
0 I

][
v̇B

ω̇B

]
+
[
ωB ×mvB

ωB × IωB

]
=
[
FB

τB

]
(2.15)

given in the body-fixed coordinate frame, where vB is the velocity in the body
frame, ωB is the angular velocity in the body frame, FB is the body force and
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τB is the body torque, both applied on the center of mass. m is the mass of the
quadrotor, I ∈ R3×3 is the inertia matrix which is constant in the body frame, I
and 0 are identity and zero matrices, respectively, with the appropriate dimensions,
in this case in R3×3.

For the practical reasons, it is more convenient to consider the Newton’s law
in the world-fixed inertial frame, thus we obtain the following pair of equations of
motion

mv̇W = FW

Iω̇B + ωB × IωB = τB
(2.16)

where vW = RWBv
B and FW = RWBF

B are the velocity and force in the world
inertial frame.

The forces acting on the quadrotor are

• the resulting thrust from the propellers T = RWBFT , where FT is the resulting
thrust in the body-fixed frame,

• the gravitational force Fg = mg acting in vertical direction, where g =
[0, 0,−g]T , and g is the gravitational acceleration,

• other external forces such as wind, hub and drag forces acting in horizontal
direction, ground effects or other unmodeled aerodynamical forces will be
considered as disturbances and denoted with Fd.

The moments acting on the quadrotor are the resulting torque τ from propellers and
τd that represents other external moments such as rolling, pitching, yawing moments,
drag induced moments or other unmodeled aerodynamical moments considered as
disturbances. A comprehensive description of aerodynamic forces and moments
acting on the quadrotor are given in [74].

Each propeller is generating a thrust Ti, and consequently a torque and a drag
moment qi proportional to the squared angular velocity of the propeller

Ti = bω2
i , qi = dω2

i . (2.17)

The resulting thrust generated by the propellers in the body-fixed frame is

FT =

 0
0∑4
i=0 Ti

 =

 0
0∑4

i=0 bω
2
i

 :=

 0
0
Fz

 (2.18)

while the resulting torque is

τ =

 l(T4 − T2)
l(T1 − T3)∑4
i=1 qi(−1)(i−1)

 =

 lb(ω2
4 − ω2

2)
lb(ω2

1 − ω2
3)

d(−ω2
1 + ω2

2 − ω2
3 + ω2

4)

 :=

τ1τ2
τ3

 (2.19)
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where l is the distance of the propeller from the center of gravity. The control of
quadrotor is then achieved by controlling the angular velocities of the each propeller
with a low-level controller. However, we assume that we are able to control Fz and
τ = [τ1, τ2, τ3]T directly.

Now, the system in (2.16) becomes

v̇ = 1
m

(RWBFT + Fd)− g

ṘWB = RWBS(ω)
Iω̇ = −ω × Iω + τ + τd

where we dropped the notation for the coordinate frames, but it must be noted that
v is in the world-fixed inertial frame and ω is in the body-fixed frame and included
the relation between the rotation matrix and the body-fixed angular velocities. S(a)
is a skew-symmetric matrix obtained from a vector a = [a1, a2, a3]T as

S(a) =

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 (2.20)

Since the matrix RWB depends on the Euler angles η, it is useful to obtain a direct
mapping RT : T→ R3×3 between the time derivatives of the Euler angles and the
angular velocity. In the body frame η̇ = RB

T (η)ω this transformation is

RB
T (η) =

1 sψtθ cψtθ

0 cψ −sψ
0 sψ

cθ

cψ
cθ

 (2.21)

Note that, in the case one wants to use angular velocities in the world frame
then ṘWB = S(ωW )RWB and a different transformation matrix is obtained η̇ =
RW
T (η)ω,

RW
T (η) =


cψ
cθ

sψ
cθ

0
−sψ cψ 0
cψtθ sψtθ 1

 (2.22)

Unless otherwise specified we will be using RT = RB
T as we are considering angular

velocities in the body frame. Note that RT is well-defined for θ ∈ (−π2 ,
π
2 ), which will

be an assumption that we will use throughout the thesis. The simplified version of
the model can be used assuming thatRT (η) = I3 which is a reasonable assumption if
the perturbations from hover flight are small. Here we adopt the shorthand notation
for trigonometric functions, i.e., sψ = sinψ, cψ = cosψ, tθ = tan θ.
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Finally, we can state the quadrotor UAV model:

ṗ = v, (2.23a)

v̇ = 1
m

(RWB(η)FT + Fd)− g, (2.23b)

η̇ = RT (η)ω, (2.23c)
Iω̇ = −ω × Iω + τ + τd (2.23d)

where p ∈ R3 is the position in the world frame, and as stated before v ∈ R3 is
the velocity in the world frame, η = [φ, θ, ψ]T ∈ T is the vector of Euler angles, and
ω = [p, q, r]T ∈ R3 is the angular velocity, expressed in the body frame.

In terms of the state-space representation the state vector is

x = [pT ,vT ,ηT ,ωT ]T

and belongs to a subset of R12 due to the Euler angle representation, and the input
vector is

u = [Fz, τT ]T ∈ R4.

The underactuation stems from the fact that the quadrotor UAV has higher degrees
of freedom (DoF) than control inputs The given model is a 6-DoF model and has
only 4 control inputs.

2.3.2 Piraya boat
We consider the model of a boat USV with one rotating thruster at the rear as
depicted on Fig. 4.1. The derivation of the model starts from the rigid-body dynamics

Figure 2.2: USV boat model with world-fixed inertial and body-fixed frame orienta-
tions. The illustration is courtesy of [75].
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as given in Eq. (2.15). We neglect the motion in the vertical direction, thus the
velocity in the body frame is now two-dimensional (forward and lateral velocities).
Also, we neglect the rolling and pitching effects on the boat, and the angular velocity
is only considered around the z-axis. Therefore, the model is the reduced 3-DoF
surface boat model which, with some abuse of the notation used in the previous
section but to be consistent with the boat community literature, can be written as
in [27, 75] for the motion in surge, sway and yaw.

η̇b = Rz,ψ(ψb)νb (2.24a)
Mν̇b +C(νb)νb +D(νb)νb = τact + τd (2.24b)

where ηb = [x, y, ψ], (x, y) ∈ R2 is the position in the world frame, ψ ∈ [0, 2π) is
the rotation of the boat in the world frame, νb = [u, v, r] is the velocity in the body
frame, where u, v, r are forward velocity (surge), lateral velocity (sway) and angular
velocity in yaw, respectively. M is the inertia matrix, C(νb) denotes the Coriolis
and centripetal effects, D(νb) is the drag matrix. We will assume that the drag
induced by the relative velocity of ship and surrounding water is considered as a
disturbance. This leads to a linear damping matrix that is valid for low relative
velocities, while at higher velocities nonlinear term dominates and big discrepancies
in the model are expected. After the observed simplifications the matrices reduce to

M =

m 0 0
0 m 0
0 0 Iz

 C(νb) =

 0 0 −mv
0 0 mu

mv −mu 0

 (2.25)

D =

−Xu 0 0
0 −Yv 0
0 0 −Nr

 (2.26)

τd are unknown disturbances, and τact = [X,Y,N ]T is the control torque. In general,
the control torque for N thrusters that generate a force FT,i mounted at a location
that is ∆x,i,∆y,i displaced from the center of mass with a rotation αr,i is defined as

τact =

XY
N

 =


∑N
i=1 FT,i cos(αr,i)∑N
i=1 FT,i sin(αr,i)∑N

i=1 FT,i (∆x,i sin(αr,i)−∆y,i cos(αr,i))

 . (2.27)

For the configuration with a thruster located at the rear ∆y,1 = 0 and

τact =

XY
N

 =

 FT cos(αr)
FT sin(αr)

∆xFT sin(αr)

 . (2.28)
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2.4 Feedback Control Laws

In this section, we confer the basic principles of the feedback control laws that will
be used, with modifications, throughout the thesis.

2.4.1 Performance Prescribed Control
We present the basic framework of prescribed performance control (PPC) which is
originally introduced in [76, 77]. It belongs to the class of robust adaptive nonlinear
controllers. The main idea is to ensure the convergence of the tracking errors e(t)
within a predefined set at a specified rate. This is accomplished by enforcing the
error to stay within a region bounded by a certain smooth and bounded function of
time, i.e.,

− ρ(t) < e(t) < ρ(t), ∀t ≥ 0, (2.29)

where ρ(t) is the performance function that can be defined, similar to [76], as
following.

Definition 2.4 (Performance function). A performance function ρ : R≥0 → R>0 is
a smooth, positive, and non-increasing function given by

ρ(t) = (ρ0 − ρ∞)e−lt + ρ∞, ∀t ≥ 0, (2.30)

where ρ0, ρ∞ ∈ R>0 with ρ0 ≥ ρ∞ and l ∈ R≥0.

e(t)

ρ(t)

−ρ(t)

−ρ∞

ρ∞

e(0)

−ρ0

ρ0

Time

Figure 2.3: The error evolves inside of the prescribed performance funnel.

Practically, ρ0 is selected such that the error starts inside of the prescribed
funnel, i.e. ρ0 > |e(0)|, ρ∞ := limt→∞ ρ(t) > 0 represents the upper bound on the
steady-state error and l is the lower bound on the convergence rate of the error.
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Therefore, appropriate choice of the discussed parameters determines the transient
and steady-state performance of the error e(t), as depicted on Fig. 2.3. Furthermore,
let the normalized errors ξ(t) be defined as

ξ(t) = ρ(t)−1e(t).

The important point in designing PPC is a transformation of the normalized error
ξ(t) with a strictly increasing, bijective function T.

Definition 2.5 (Transformation function). A transformation function T : (−1, 1)→
R is a smooth and strictly increasing, hence a bijective function. In particular, let

T(ξ(t)) = atanh(ξ(t)) = 1
2 ln 1 + ξ(t)

1− ξ(t) . (2.31)

The derivative of this transformation is

r(ξ) := T(ξ)
ξ

= 1
1− ξ2 . (2.32)

For a vector of normalized errors ξ = [ξ1, . . . , ξn]T ∈ Rn, we define

T(ξ) = 1
2

[
ln 1+ξ1

1−ξ1
. . . ln 1+ξn

1−ξn

]T
(2.33)

and the derivative in the matrix form

T(ξ)
ξ

= diag
{[

1
1− ξ2

i

]
i∈{1,...,n}

}
(2.34)

In order to design a continuous feedback control law and ensure the normalized
errors stay within the interval (−1, 1), the transformed errors ε(t) = T(ξ(t)) need to
be bounded. Therefore, if ε(t) is bounded for all t ≥ 0, then e(t) satisfies (2.29). Note
that the direct application of PPC methodology is not possible for underactuated
systems, a topic that we will further investigate in the coming chapters.

2.4.2 Model Predictive Control
Model predictive control (MPC) is a control strategy based on iterative computation
of a control input by minimizing a given cost function with respect to all possible
control inputs and predicted state trajectories satisfying enforced input and state
constraints. At every time step, the controller is solving the finite-horizon optimal
control problem (FHOCP) based on the current initial condition. The problem is
considering the system during a predefined prediction horizon. The first value of the
resulting optimal control input is implemented in a zero-order-hold manner until the
next control input is computed. The time between two control inputs is defined as
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the control horizon, and the system is evolving under an ”open-loop” control input.
By executing the described procedure iteratively the feedback loop is closed [78].

Consider the initial value problem given by general nonlinear system dynamics
with additive disturbances, and the initial condition x0 at time t0 = 0,

ẋ(t) = f(x(t),u(t)) +w(t), x(0) = x0 (2.35)

where x(t) ∈ X ⊆ Rn, u(t) ∈ U ⊆ Rm and w(t) ∈ W ⊂ Rn, for all t ≥ 0.
We introduce the MPC as a stabilization problem around a steady-state pair

(xs,us) ∈ X × U , that we consider, without loss of generality, to be the origin
(xs,us) = (0,0). The following standard MPC assumptions as in [51] are needed.

Assumption 2.1. It is assumed that

(i) the function f : Rn × Rm → Rn is twice continuously differentiable and
f(0,0) = 0;

(ii) U ⊆ Rm is compact, convex and 0 ∈ Rm is contained in U ;

(iii) the system in (2.35) has a unique solution for any initial condition x0 ∈ Rn,
any piecewise continuous and right-continuous control u : [t0,∞) → U , and
any disturbance w : [t0,∞)→W;

(iv) for the linearized system around the origin without disturbances, i.e., ẋ =
Ax(t) + Bu(t), where A = ∂f

∂x (0,0) and B = ∂f
∂u (0,0), the pair (A,B) is

stabilizable;

(v) for the linearized dynamics around the origin, there exists a matrix K such
that Ak = A+BK is a stable Hurwitz matrix.

The cost function J(x̂(tk),u(tk)), at the time step tk, is defined such that
it penalizes the deviations of the predicted nominal system trajectories x̂(τ ; tk)
and control input u(τ) from the origin, for the duration of the prediction horizon
τ ∈ [tk, tk + T ], T > 0, as

J(x̂(τ ; tk),u(τ ; tk)) = V (x̂(tk + T ; tk)) +
∫ tk+T

tk

l(x̂(τ ; tk),u(τ))dτ, (2.36)

where V : Rn → R≥0 is the terminal cost and l : Rn × Rm → R≥0 is the stage cost
function.

Now, we formulate the MPC as the finite-horizon optimal control problem that
is solved at every time step tk = t0 + k∆, where k ∈ N and ∆ > 0 is the sampling
rate.

Problem 2.1. At time tk, given the initial state x(tk), the finite-horizon optimal
control problem is to minimize

min
u
J(x̂(τ ; tk),u(τ ; tk)) (2.37a)
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subject to

˙̂x(τ ; tk) = f(x̂(τ ; tk),u(τ ; tk)), τ ∈ [tk, tk + T ] , (2.37b)
x̂(τ ; tk) ∈ X , (2.37c)
u(τ ; tk) ∈ U , (2.37d)
x̂(tk + T ; tk) ∈ Xf . (2.37e)

The result is the optimal control input u∗(τ ; tk), valid for τ ∈ [tk, tk + T ]. The
first control input is applied u∗(tk; tk) for τ ∈ [tk, tk + ∆] and the procedure is
repeated. As an optimization-based method, MPC takes into account the state
and input constraint satisfaction during the prediction horizon (2.37c)-(2.37d). The
results on feasibility and stability of MPC are based on recursive properties of the
method as well as satisfaction of the terminal constraints (2.37e) and existence a
local control law that ensure that the cost is not increasing when the state is in
the terminal constraint set, although this local control law is not needed to be
implemented. However, there are results to avoid usage of the terminal constraints
[79]. Moreover, MPC also posses inherent robustness properties [80, 81].

2.5 Distributed Control

The distributed control of multi-agent systems is a very broad research area. There
are two important goal-oriented aspects of the distributed control of multi-agent
systems that are consensus (rendezvous) and formation control. In this thesis, we
consider the rendezvous problem and formulate it for two or more agents. The
formulation for two agents is based on the leader-follower framework in which one
of the agent is acting as the leader and may have an additional goal in the problem,
while the other agent is simply following the leader. These formulations will be
additionally specified in the chapters considering the distributed control problems.

The distributed control in the context of this thesis will be used with prediction-
based methods such as model predictive control. We consider dynamically decoupled
agents in problems that are designed as cooperative problems, though some aspects
of non-cooperative control are also examined. The distributed model predictive
control has been widely studied as outlined in Section 1.1.2.





Chapter 3

Trajectory Tracking for Unmanned Aerial
Vehicles with Prescribed Performance

In this chapter we investigate trajectory tracking with prescribed performance
control (PPC) methodology for a quadrotor unmanned aerial vehicle (UAV). UAV
systems are highly nonlinear, underactuated and model parameters may vary during
the flight as outlined in Subsection 2.3.1. This makes the control design even more
demanding, especially in scenarios when UAVs need to meet performance and safety
specifications. Such specifications are vital in landing scenarios on other unmanned
surface vehicles (USV).

The prescribed performance control traditionally deals with model uncertainties
and transient- and steady-state constraints and it is introduced in Subsection 2.4.1.
However, the original PPC methodology cannot be directly applied to the quadrotor
systems because they belong to the class of underactuated systems. Therefore, it is
necessary to introduce design modifications to stabilize the considered system with
prescribed performance.

We present a modified Prescribed Performance Control protocol developed in
[82] to solve the trajectory-tracking control problem for quadrotors with prescribed
performance. Our main contribution is in the extension of the original PPC algorithm
to account for the underactuated quadrotor system. At the same time, the proposed
control protocol does not use any information on the model parameters and is
robust to unknown exogenous disturbances without employing approximation or
observer-based schemes. Similarly to the original PPC methodology, the tracking
errors evolve within predefined user-specified functions of time, achieving prescribed
transient and steady-state performance that is independent from the selection of the
control gains. Furthermore, we present the stability theorem and the proof. Finally,
simulation results for two scenarios verify the theoretical results.

It should be noted that PPC has been recently used to control quadrotors. In
[83, 84] authors use PPC for the attitude subsystem, thus avoiding the underactuated
part of the system. Other works [85–88] focus on the complete system but use neural
network approximations, partial knowledge of dynamic parameters, observers for

25
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disturbance estimates and exploit these information in the controller. On the contrary,
the proposed controller does not use any information on the dynamic parameters or
external disturbances. In [89], the authors proposed a similar control design using
PPC for an underactuated 3-DOF helicopter. Such a system is, however, significantly
different than the one studied in our work and hence the respective control design
is not applicable. A comprehensive literature review is available in Subsection 1.1.1.

3.1 Problem Statement

In this chapter, we consider the general trajectory tracking control problem as stated
in Problem 1.1, for quadrotor systems. Before we state and formalize the specifics of
the problem, let us first introduce the dynamical system of interest for this chapter.

The quadrotor UAV model (2.23) is described in Subsection 2.3.1 but here we
consider angular velocities ω in the inertial world frame. Therefore the matrix
RT (η) = RW

T (η) as in (2.22). Thus the model is

ṗ = v, (3.1a)

v̇ = 1
m

(RWB(η)FT + Fd(x, ẋ, t))− g, (3.1b)

η̇ = RT (η)ω, (3.1c)
I(η)ω̇ = −ω × I(η)ω + τ + τd(x, ẋ, t) (3.1d)

where x = [pT ,vT ,ηT ,ωT ]T , p ∈ R3 is the position in the inertial frame, v ∈ R3 is
the linear velocity, η = [φ, θ, ψ]T ∈ T = (−π2 ,

π
2 )× (−π2 ,

π
2 )× (−π, π) is the vector of

Euler angles representing the attitude (roll, pitch, yaw angles), and ω = [ωφ, ωθ, ωψ]T
is the angular velocity, expressed in the inertial frame; FT = [0, 0, Fz]T is the
controlled thrust, and τ is the inertial-frame controlled torque; The functions
Fd(x, ẋ, t) = [F Td,xy,Fd,z]T , τd := τd(x, ẋ, t) represent unmodelled aerodynamic
forces and moments like drag, hub forces or ground and gyroscopic effects, and
exogenous disturbance. The two functions are continuous in x and ẋ, uniformly
bounded in t. The term g = [0, 0, g]T ∈ R3 corresponds to the constant gravity
vector. Finally, m ∈ R and I : T→ R3×3 are the mass and positive definite inertia
matrix of the UAV, also considered unknown.

We consider the tracking control problem of given time-varying reference trajec-
tories pr = [px,r, py,r, pz,r]T : [0,∞)→ R3, ψr : [0,∞)→ R for the position and yaw
angles with prescribed performance. pr and ψr are assumed to be smooth functions
of time with bounded first and second derivatives. We adapt the PPC methodology
to achieve trajectory tracking with prescribed performance for the position and
yaw-angle variables.
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More specifically, the control objective is to guarantee that the errors

ep =

epxepy
epz

 = p− pr (3.2a)

eψ = ψ − ψr (3.2b)

evolve strictly within a funnel dictated by the corresponding exponential performance
functions ρpx(t), ρpy (t), ρpz (t), ρψ(t), which is formulated as

|epi(t)| <ρpi(t), i ∈ {x, y, z} (3.3a)
|eψ(t)| <ρψ(t), (3.3b)

for all t ≥ 0, given the initial funnel compliance

|epi(0)| <ρpi(0), i ∈ {x, y, z}
|eψ(0)| <ρψ(0).

The adopted exponentially-decaying performance functions are

ρpi(t) = (ρpi,0 − ρpi,∞)e−lpi t + ρpi,∞, i ∈ {x, y, z}
ρψ(t) = (ρψ,0 − ρψ,∞)e−lψt + ρψ,∞.

3.2 Reformulating the Model

Since the UAV system is underactuated, the idea is to take advantage of the specific
control inputs to control the vertical velocity vz and angular velocity ω, but also
introduce virtual control on the horizontal velocities vxy = [vx, vy]T such that the
given reference is tracked. Let us first rewrite the system dynamics in a control
suitable form.
Let

Rz,ψ =
[
Rψ 0
0 1

]
and the factorization

RWBFT = Rz,ψRy,θRx,φ

 0
0
Fz

 =
[
RψTφθFz

cθcφFz

]

where

Tφθ =
[
sθcφ

−sφ

]
, (3.4)
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and Rψ ∈ SO(2). Then, the velocity dynamics v = [vTxy, vz]T can be written as

v̇xy = 1
m

(RψTφθFz + Fd,xy) , (3.5a)

v̇z = 1
m

(cθcφFz + Fd,z)− g. (3.5b)

Furthermore, let us define the matrices

Jφθ =
[
−sθsφ cθcφ

−cφ 0

]
and Rφθ =

[
cψ
cθ

sψ
cθ

−sψ cψ

]
,

that satisfy

Ṫφθ = Jφθ

[
φ̇

θ̇

]
and RT =

[
Rφθ 02

cψtθ sψtθ 1

]
which will be used in the sequel. Note that Rφθ is well-defined and invertible for
|θ| < π

2 , while Jφθ is invertible for |φ| < π
2 and |θ| < π

2 . This is a commonly used
assumption for UAV systems [13, 18, 22] and we adopt it in this paper:

Assumption 3.1. The roll and pitch angles satisfy |φ(t)| ≤ π̄, |θ(t)| ≤ π̄, for all
t ≥ 0 and some π̄ < π

2 .

3.3 Control Design

We describe now the proposed control-design procedure.

PPC on position error

We first define the normalized position error

ξp =

ξpxξpy
ξpz

 = ρp(t)−1ep (3.6)

where ρp = diag{[ρpx , ρpy , ρpz ]} ∈ R3×3. Next, we define the transformation

εp =T(ξp) (3.7)

where T is given by (2.33) and we design the reference velocity signal

vr =
[
vxy,r

vz,r

]
= −kpρ−1

p rpεp (3.8)

where rp = dT(ξp)
dξp = diag

{
1

1−ξ2
px

, 1
1−ξ2

py

, 1
1−ξ2

pz

}
and kp is a positive control gain.

From the first step, we obtain the velocity reference vr that will be used shortly.
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PPC on velocity error

Following a backstepping-like procedure, we define the error

ev =
[
evxy
evz

]
=

evxevy
evz

 = v − vr =
[
vxy

vz

]
−

[
vxy,r

vz,r

]
(3.9)

Next, we introduce the corresponding exponential performance functions

ρvi(t) = (ρvi,0 − ρvi,∞)e−lvi t + ρvi,∞, i ∈ {x, y, z}

such that ρvi(0) = ρvi,0 > |evi(0)|, for i ∈ {x, y, z}, which leads to the normalized
error

ξv =
[
ξvxy
ξvz

]
=

ξvxξvy
ξvz

 = ρv(t)−1ev, (3.10)

with ρv = diag{ρvx , ρvy , ρvz}. Next, we define the transformation

εv =
[
εvxy
εvz

]
= T(ξv) (3.11)

and set the control input Fz as

Fz = −kvzρ−1
vz rvzεvz (3.12)

where rvz = dT(ξvz )
dξvz

= 1
1−ξ2

vz

and kvz is a positive control gain.
Moreover, we define the reference signal for Tφθ, defined in (3.4), as

Tφθ,r =
[
Tφθ1,r

Tφθ2,r

]
= −kvxy

RT
ψρ
−1
vxyrvxyεvxy

Fz
, (3.13)

where kvxy is a positive control gain, ρvxy = diag{ρvx , ρvy} is a matrix consisting of
previously defined performance functions, and rvxy = dT(ξvxy )

dξvxy
= diag

{
1

1−ξ2
vx

, 1
1−ξ2

vy

}
.

As a result of this step in the control design, we obtain the control input Fz that
will be directly applied to the system, and the reference Tφθ,r, that will be used to
design the control for angles and angular velocities. Note that in Eq. (3.13), Fz is
required to be not equal to zero, which will be a condition in the stability theorem.
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PPC on angular errors

The reference signal Tφθ,r implicitly assigns reference values for the angles φ, θ.
Moreover, given the reference ψr, we define the respective errors

eφθ =
[
eφθ1

eφθ2

]
= Tφθ − Tφθ,r (3.14a)

eψ = ψ − ψr (3.14b)

By further introducing exponential performance functions

ρi(t) = (ρi,0 − ρi,∞)e−lit + ρi,∞

such that ρi(0) = ρi,0 > |ei(0)|, for i ∈ {φθ1, φθ2, ψ}, we define the normalized
errors

ξφθ =
[
ξφθ1

ξφθ2

]
= ρφθ(t)−1eφθ (3.15a)

ξψ =ρψ(t)−1eψ (3.15b)

where ρφθ = diag{ρφθ1 , ρφθ2}, and the transformations

εφθ = T(ξφθ) (3.16a)
εψ = T(ξψ) (3.16b)

In order to stabilize the aforementioned errors, we design reference signals for the
angular velocities

ωr =
[
ωφθ,r

ωψ,r

]
=

ωφ,rωθ,r

ωψ,r

 = −
[

kφθR
−1
φθ J

−1
φθ ρ

−1
φθ rφθεφθ

kψρ
−1
ψ rψεψ + ωφcψtθ + ωθsψtθ

]
(3.17)

where kφθ and kψ are positive control gains, and rφθ = dT(ξφθ)
dξφθ = diag

{
1

1−ξ2
φθ1

, 1
1−ξ2

φθ2

}
.

Note that R−1
φθ and J−1

φθ are well-defined due to Assumption 3.1.

PPC on angular velocity errors

The final step is the design of the control inputs τ for tracking of the reference
angular velocities designed in the previous step. To that end, we define first the
angular velocity errors

eω =
[
eωφθ
eωψ

]
= ω − ωr =

[
ωφθ

ωψ

]
−

[
ωφθ,r

ωψ,r

]
(3.18)
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We further introduce exponential performance functions

ρωi(t) = (ρωi,0 − ρωi,∞)e−lωi t + ρωi,∞

such that ρωi(0) = ρωi,0 > |eωi(0)|, for i ∈ {φ, θ, ψ}, to impose predefined perfor-
mance on the error eω, and define the respective normalized error

ξω =

ξωφξωθ
ξωψ

 = ρω(t)−1eω (3.19)

Finally, we define the transformation

εω = T(ξω) (3.20)

and design the control input

τ = −kωρ−1
ω rωεω (3.21)

where rω = dT(ξω)
dξω = diag

{
1

1−ξ2
ωφ

, 1
1−ξ2

ωθ

, 1
1−ξ2

ωψ

}
, ρω = diag{ρωφ , ρωθ , ρωψ}, and

kω is a positive gain.
With this, the control design procedure is finalized and we can proceed with the

stability analysis of the proposed scheme.

3.4 Stability Analysis

The stability analysis of the proposed control protocol is summarized in the next
theorem.

Theorem 3.1. Consider the UAV dynamics (3.1) under the proposed control scheme
(3.6)-(3.21) and Assumption 3.1. Further assume that

Fz(t) 6= 0 (3.22a)
kvxy
kvz

>
maxi∈{φθ1,φθ2}{ρi,0}

4 cos(π̄)2 (3.22b)

|Ti,r(t)| ≤ ρi(t) + 1, i ∈ {φθ1, φθ2} (3.22c)

for t ≥ 0, where π̄ is defined in Assumption 3.1. Then it holds that

|epi(t)| <ρpi(t), i ∈ {x, y, z}
|eψ(t)| <ρψ(t)

and all closed-loop signals are bounded, for all t ≥ 0.
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Remark 3.1. Condition (3.22a) is needed for the boundedness of the intermediate
signal (3.13). Intuitively, it requires the UAV thrust, set in (3.12), to be always
positive and compensate for the gravitational force g. Note that this is a condition
encountered in the related literature (e.g., [90]). One can guarantee (3.22a) by
adding an integrator in (3.12) and adjust appropriately the performance function
ρpz (t); for more details, we refer the reader to [89]. The parameter-related condition
(3.22b), which is needed for the correctness of Theorem 3.1, essentially imposes
restrictions on the angles θ, φ and the error eφθ; such error must be small enough,
as dictated by the initial performance values ρφθ1,0, ρφθ2,0 in the nominator of
the right-hand-side of (3.22b), and the angles θ, φ themselves must be close to
zero, maximizing the denominator of the right-hand-side of (3.22b). Intuitively, the
aforementioned constraints require small reference signals Tφθ,r, which translate to
slow reference trajectories px,r(t) and py,r(t). Similarly, (3.22c) is needed since the
values of Tφθ in (3.4) cannot exceed the value of 1. We can enforce such a condition
by choosing slowly-converging performance functions ρφθ1(t) and ρφθ2(t) with large
initial values.

Proof. The proof proceeds in three steps. First, we show the existence of a local
solution such that ξp(t), ξv(t), ξω(t) ∈ (−1, 1)3, ξψ(t) ∈ (−1, 1), ξφθ(t) ∈ (−1, 1)2

for a time interval t ∈ [0, τmax). Next, we show that the proposed control scheme
retains the aforementioned normalized signals in compact subsets of (−1, 1), which
leads to τmax =∞ in the final step, thus completing the proof.

Towards the existence of a local solution, consider first the overall state vector
x = [pT ,vT ,ηT ,ωT ]T ∈ X = R6 × (−π2 ,

π
2 )2 × (−π, π) × R3 and let us define the

open set:

Ω =
{

(x, t) ∈ X× [0,∞) : ξp ∈ (−1, 1)3, ξv ∈ (−1, 1)3,

ξφθ ∈ (−1, 1)2, ξψ ∈ (−1, 1), ξω ∈ (−1, 1)3}. (3.23)

Note that the choice of the performance functions at t = 0 implies that ξp(0),
ξv(0), ξω(0) ∈ (−1, 1)3, ξφθ(0) ∈ (−1, 1)2, and ξψ(0) ∈ (−1, 1), implying that Ω is
nonempty. By combining (3.1), (3.12), and (3.21), we obtain the closed-loop system
dynamics ẋ = fx(x, t), where fx : X × [0, τmax) is a function continuous in t and
locally Lipschitz in x.

Hence, the conditions of Theorem 2.2 are satisfied and we conclude that there
exists a unique and local solution x : [0, τmax) → X such that (x(t), t) ∈ Ω for
t ∈ [0, τmax). Therefore, it holds that

ξp ∈ (−1, 1)3 (3.24a)
ξv ∈ (−1, 1)3 (3.24b)
ξφθ ∈ (−1, 1)2 (3.24c)
ξψ ∈ (−1, 1) (3.24d)
ξω ∈ (−1, 1)3 (3.24e)
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for all t ∈ [0, τmax).
Next, we proceed to show that the normalized errors in (3.24) remain in compact

subsets of (−1, 1). Note that (3.24) implies that that transformed errors εp, εv,
εφθ, εψ, εω are well-defined for t ∈ [0, τmax). Consider now the candidate Lyapunov
function:

Vp = 1
2‖εp‖

2

Differentiating Vp along the local solution x(t) yields

V̇p = εTp rpρ
−1
p (v − ṗr − ρ̇pξp)

By using v = ev + vr, (3.8), the boundedness of ṗr, ρ̇p, and (3.24), V̇p becomes

V̇p ≤ −kp‖ρ−1
p rpεp‖2 + ‖ρ−1

p rpεp‖F̄p

where F̄p is a constant, independent of τmax, satisfying

‖ρvξv − ṗr − ρ̇pξp‖ ≤ F̄p,

for all t ∈ [0, τmax). Therefore, we conclude that V̇p < 0 when ‖ρ−1
p rpεp‖ >

F̄p
kp

. In
view of the definition of rp, we conclude that

V̇ < 0 when ‖εp‖ >
F̄p maxi∈{x,y,z}{ρpi,0}

kp
.

Hence, by invoking Theorem 2.4, we conclude that

‖εp‖ ≤ ε̄p = max
{
‖εp(0)‖,

F̄p maxi∈{x,y,z}{ρpi,0}
kp

}
(3.25a)

for t ∈ [0, τmax), and by employing the inverse of (2.31), we obtain

|ξpi(t)| ≤ ξ̄p = tanh ε̄p < 1 (3.25b)

for t ∈ [0, τmax) and i ∈ {x, y, z}. Therefore, we conclude the boundedness of vr(t)
and v(t) = ev(t) + vr(t) = ρv(t)ξv(t) + vr(t) for all t ∈ [0, τmax). By differentiating
vr(t) and using (3.25), we further conclude the boundedness of v̇r(t) for all t ∈
[0, τmax).

We consider next the function Vv = 1
2‖εv‖

2, whose derivative, in view of (3.1),
and (3.5), yields

V̇v =εTvxyrvxyρ
−1
vxy

(
1
m

(RψTφθFz + Fd,xy)− v̇xy,r − ρ̇vxyξvxy
)

+ εTvzrvzρ
−1
vz

(
1
m

(cθcφFz + Fd,z)− g − v̇z,r − ρ̇vzξvz
)
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for t ∈ [0, τmax). By using Tφθ = eφθ + Tφθ,r, (3.13), (3.12), the boundedness of v̇r,
ρ̇v, and (3.24), and the continuity and boundedness of Fd(x, ẋ, t) in (x, ẋ) and t,
respectively, we arrive at

V̇v ≤−
kvxy
m
‖ρ−1

vxyrvxyεvxy‖
2 − kvzcθcφ

m
‖ρ−1
vz rvzεvz‖

2

+ kvz ρ̄φθ
m
‖ρ−1

vxyrvxyεvxy‖‖ρ
−1
vz rvzεvz‖+ ‖ρ−1

v rvεv‖F̄v

where F̄v is a positive constant, independent of τmax, satisfying

‖Fd − g − v̇r − ρ̇vξv‖ ≤ F̄v

for t ∈ [0, τmax), and ρ̄φθ = maxi∈{φθ1,φθ2}{ρi,0}. Additionally, Assumption 3.1
implies that cθcφ ≥ c̄ = cos(π̄)2 > 0.

Let us now define a constant α > 0 such that kvxy >
kvz
√
α

2 , cos(π̄)2 >
ρ̄φθ
2
√
α

.
Note that such a constant exists due to (3.22b). By completing the squares, V̇v
becomes

V̇v ≤ −κv‖ρ−1
v rvεv‖2 + ‖ρ−1

v rvεv‖F̄v

for t ∈ [0, τmax), where κv = min{κvxy , κvz}, and

κvxy =
kvxy
m
− kvz

√
α

2m , κvz = kvz

(
c̄

m
− ¯ρφθ

2m
√
α

)
Therefore, by following a similar procedure as with Vp, we conclude that

‖εv(t)‖ ≤ε̄v = max
{
‖εv(0)‖,

F̄v maxi∈{x,y,z}{ρvi,0}
κv

}
(3.26a)

|ξvi(t)| ≤ξ̄v = tanh ε̄v < 1 (3.26b)

for t ∈ [0, τmax) and i ∈ {x, y, z}. Also, in view of (3.22a), we conclude the bounded-
ness of Tφθ,r, Fz, Tφθ = ρφθ(t) +Tφθ,r, for t ∈ [0, τmax). By differentiating Tφθ,r and
Fz and using (3.26) and (3.22a), we further conclude the boundedndess of Ṫφθ,r(t)
and Ḟz(t), for all t ∈ [0, τmax).

Following a similar line of proof, we consider now the function Vη = 1
2‖εφθ‖

2+ 1
2ε

2
ψ,

whose derivative, in view of (3.1), becomes

V̇η =εTφθrφθρ−1
φθ

(
JφθRφθωφθ − Ṫφθ,r − ρ̇φθξφθ

)
+ εψρ

−1
ψ rψ(cψtθωφ + sψtθωθ + ωψ − ψ̇r − ρ̇ψξψ)

By using ωφθ = eωφθ +ωφθ,r, ψ = ψr + eψ, (3.17), (3.24), and the continuity of Jφθ,
Assumption 3.1, and the boundedness of Ṫφθ,r, ρ̇φθ, ρψ, one obtains

V̇η ≤− kφθ‖ρ−1
φθ rφθεφθ‖

2 + ‖ρ−1
φθ rφθεφθ‖F̄φθ − kψ(ρ−1

ψ rψεψ)2 + |ρ−1
ψ rψεψ|F̄ψ

≤− kη‖ρ−1
η rηεη‖2 + ‖ρ−1

η rηεη‖F̄η
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where F̄φθ and F̄ψ are positive constants, independent of τmax, satisfying

‖JφθRφθeωφθ − Ṫφθ,r − ρ̇φθξφθ‖ ≤ F̄φθ and |eψ − ψ̇r − ψ̇ξψ| ≤ F̄ψ

for t ∈ [0, τmax). We define ρη = diag{ρφθ, ρψ}, rη = diag{rφθ, rψ}, εη = [εTφθ, εψ]T ,
kη = min{kφθ, kψ}, and F̄η = max{F̄ψ, F̄φθ}.

Thus, it holds that V̇η < 0 when ‖ρ−1
η rηεη‖ >

F̄η
kη

, which, similar to the previous
steps, leads to

‖εη(t)‖ ≤ε̄η = max
{
‖εη(0)‖, F̄η maxi∈φ,θ,ψ{ρi,0}

kη

}
(3.27a)

|ξi(t)| ≤ξ̄η = tanh(ε̄η) (3.27b)

for t ∈ [0, τmax) and i ∈ {φθ1, φθ2, ψ}. Therefore, in view of the boundedness of
eω(t), we conclude the boundedness of ωφθ,r(t), ωψ,r(t) and hence of ω(t), for all
t ∈ [0, τmax). By using (3.27), we further conclude the boundedness of ω̇φθ,r(t) and
ω̇ψ,r(t) for all t ∈ [0, τmax).

Finally, using a similar line of proof and considering the function Vω = 1
2‖eω‖

2,
we conclude that

‖εω(t)‖ ≤ ε̄ω = max
{
‖εω(0)‖,

F̄ω maxi∈{φ,θ,ψ}{ρωi,0}
kωλ

}
(3.28a)

|ξωi(t)| ≤ tanh(ε̄ω) < 1, (3.28b)

for t ∈ [0, τmax) and i ∈ {φ, θ, ψ}, where λ is the positive minimum eigenvalue of
the positive definite inertia matrix I(η). F̄ω is a positive constant satisfying

‖τd − I−1ω × Iω − ω̇r − ρ̇ωξω‖ ≤ F̄ω,

where we use the boundedness of ξω and ω from (3.24), the boundedness of ω̇φθ,r(t)
from the previous step, and the boudnedness of τd due to its continuity in (x, ẋ) and
boundedness in t. Finally, (3.28) leads to the boundedness of τ (t) for all t ∈ [0, τmax).

What remains to be shown is that τmax = ∞. Towards that end, note that
(3.25), (3.26), (3.27), and (3.28) imply that (x(t), t) remain in a compact subset
of Ω, i.e., there exists a positive constant d such that d((x(t), t), ∂Ω) ≥ d > 0, for
all t ∈ [0, τmax), where d((x(t), t), ∂Ω) is in view of definition within Theorem 2.3.
Since all closed-loop signals have already been proven bounded, it holds that

lim
t→τ−

max

(
‖x(t)‖+ 1

d((x(t), t), ∂Ω)

)
≤ d̄

for some finite constant d̄, and hence direct application of Theorem 2.3 dictates that
τmax =∞, which concludes the proof.
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Remark 3.2. From the aforementioned proof it can be deduced that the proposed
control scheme achieves its goals without resorting to the need of rendering the
ultimate bounds ε̄p, ε̄v,ε̄η, ε̄ω of the transformed errors arbitrarily small by adopting
extreme values of the control gains kp, kvxy , kvz , kφθ, kψ, and kω. Notice that (3.25),
(3.26), (3.27), and (3.28) hold no matter how large the finite bounds ε̄p, ε̄v, ε̄η,
ε̄ω are and regardless of the choice of the control gains. In the same spirit, large
uncertainties involved in the nonlinear model (3.1) can be compensated, as they
affect only the size of these bounds through F̄v and F̄ω, but leave unaltered the
achieved stability properties. Hence, the actual performance given in (3.3), which is
solely determined by the designer-specified performance functions, becomes isolated
against model uncertainties, thus extending greatly the robustness of the proposed
control scheme.

Remark 3.3. It should be noted that the selection of the control gains affects both
the quality of evolution of the errors ep, eψ within the corresponding performance
envelopes as well as the control input characteristics. Additionally, fine tuning might
be needed in real-time scenarios, to retain the required control input signals within
the feasible range that can be implemented by the actuators. Similarly, the control
input constraints impose an upper bound on the required speed of convergence of
ρpi(t), i ∈ {x, y, z}, ρψ(t), as obtained by the exponentials e−lpi t, i ∈ {x, y, z}, and
e−lψt, respectively. Hence, the selection of the control gains kp, kvxy , kvz , kφθ, kψ,
kω can have positive influence on the overall closed loop system response. More
specifically, notice that F̄v and F̄ω provide implicit bounds on ε̄v and ε̄ω, respectively.
Therefore, invoking (3.12) and (3.21), we can select the control gains such that
Fz and τ are retained within certain bounds. Nevertheless, the constants F̄v and
F̄ω involve the parameters of the model and the external disturbances. Thus, an
upper bound of the dynamic parameters of the system as well as of the exogenous
disturbances should be given in order to extract any relations between the achieved
performance and the input constraints. Finally, we stress that the scalar control
gains kp, kvxy , kvz , kφθ, kψ, kω can be replaced by diagonal matrices, adding more
flexibility in the control design, without affecting the stability analysis.

3.5 Simulation Results

We evaluate the proposed control algorithm to the case of tracking reference trajec-
tories pr(t) = [px,r(t), py,r(t), pz,r]T in ascent and landing scenarios. To ensure that
errors start inside of the funnel we choose the prescribed performance functions
according to the parameters in Table 3.1. The control gains are selected as

kp = diag{1.25, 1.25, 12.5} kvz = 10 kvxy = diag{1, 2}
kφθ = diag{3, 1.5} kψ = 1 kω = 10I3

The parameters are identical in both scenarios.
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description function indices ρ0 ρ∞ l

position ρpi(t) i = {x, y, z} 12 0.2 0.4
horizontal velocity ρvi(t) i = {x, y} 3 0.5 0.5
vertical velocity ρvz (t) 5 0.2 1.5
angles ρφθj (t) j = {1, 2} 0.5 0.25 0.5

ρψ(t) 0.4 0.05 0.1
angular velocity ρωj (t) j = {φ, θ, ψ} 0.3 0.1 0.5

Table 3.1: Parameters of performance functions

Ascent trajectory

The reference ascent trajectory is constructed as a lemniscate (”∞-shaped” trajec-
tory) in the horizontal plane with the ramp function in the vertical direction and
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Perspective view of the quadrotor ascent trajectory

Reference trajectory pr(t)

Actual trajectory p(t)

Initial point p(0)

Figure 3.1: Perspective view of trajectory tracking. Note that initial drop in the
actual trajectory occurs due to zero initial controlled thrust and no simulated surface
beneath.
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zero yaw reference

px,r(t) = cos(t)
1 + sin2(t)

py,r(t) = sin(t) cos(t)
1 + sin2(t)

pz,r(t) = 1 + 1
5 t

ψr(t) = 0

starting from the origin p(0) = [0, 0, 0]T . In Fig. 3.1 we see how the big initial
displacement from the reference signal is gradually reduced until the tracking error
is eliminated. A comparison of all state signals during time against the given and
designed references is provided in Fig. 3.2. Finally, in Fig. 3.3 we observe that all
error signals remain inside of the prescribed funnels during the simulation and that
errors converge according to the specified performance functions.
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Figure 3.2: The evolution of state signals p(t), v(t),η(t),ω(t) compared to the given
reference pr(t), ψr(t) and the designed reference signals vr(t),ωr(t) as well as reference
angles extracted from Tφθ,r.
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Figure 3.3: Error evolutions stay inside of the prescribed funnels during the experi-
ment. Note that errors eφθ = [eφθ1 , eφθ2 ]T = Tφθ − Tφθ,r are dimensionless and eψ is
in radians.

Landing scenario

Quadrotor UAV is landing on a boat USV moving according to a predefined trajectory
pb(t) = [pb,x(t), pb,y(t)]T which is given as a solution of the following dynamical
system with the control input u(t)

ṗb,x(t) = cos(α(t))
ṗb,y(t) = sin(α(t))

α̇(t) = u(t)
u(t) =


−1 0 ≤ t ≤ 3π

4
1 3π

4 < t ≤ 9π
4

−1 9π
4 < t ≤ 11π

4
0 11π

4 < t ≤ 10
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It is assumed that the quadrotor is aware of the trajectory of the boat and the
quadrotor reference is thus ψr(t) = 0, pr(t) = [pb,x(t), pb,y(t), pz,r(t)]T , with

pz,r(t) = zd

(
1− 1

1 + e−(t−td)

)
,

where zd = 5 is the initial height and td = 5 is a tuning parameter of the descent
time.

The perspective view of the landing is depicted in Fig. 3.4 and error signals
evolution inside of funnels is shown in Fig. 3.5.

The errors between the references and states in the attitude subsystem in both
cases are very small, thus achieving almost perfect tracking. The performance func-
tions are chosen such that the roll and pitch angle errors through the transformation
Tφθ in (3.4), are always less than 15◦, approximately. This makes the control effort
sufficiently aggressive while at the same time enables handling of stronger distur-
bances. The position subsystem errors are allowed to be quite big at the beginning
of the transient and are sharply reduced to 0.2m error bound. The most aggressive
performance satisfaction is required on the vertical velocity vz to offset the gravity.
This is in line with the discussion in Remark 3.1.
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Figure 3.4: Perspective view of the landing scenario
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Figure 3.5: Error signals of the given references pr(t), ψr(t) stay inside of the pre-
scribed funnels during the experiment. The rest is omitted due to brevity.

3.6 Conclusion

In this chapter we presented an approach in control design for the trajectory
tracking of a quadrotor UAV using the Prescribed Performance Control methodology.
Theoretical guarantees are established and controller is validated in the simulation.
Future work will include the deployment of the controller on the real quadrotor
and testing it in experimental environments. Furthermore, we seek to extend the
framework with trajectory generation and coordination in multi-agent scenarios.
In the next chapter, we will present a modified PPC for USV and an advanced
kinodynamic trajectory generation that can also be used for UAVs.





Chapter 4

Kinodynamic Motion Planning via Funnel
Control for Unmanned Surface Vehicle

In this chapter, we continue the discussion about the funnel control for underactuated
unmanned vehicles. Namely, we present an algorithm to control an underactuated
unmanned surface vehicle (USV) using kinodynamic motion planning with funnel
control (KDF). KDF has two main components: motion planning with RRT used to
generate trajectories, and funnel control based on prescribed performance control to
track the trajectory with respect to kinodynamic constraints. We extend prescribed
performance control to accommodate for underactuation and control input saturation
present on the USV. The stability is preserved under the user-defined prescribed
performance scheme where model parameters are considered unknown. In addition,
we utilize an optimization problem to obtain smooth and collision-free trajectories
respecting the kinodynamic constraints. The algorithm is deployed on a USV and
tested in real-world open water experiments.

We split the problem of control of a surface vehicle (a boat) into two layers:
motion planning(or guidance as referred in some literature), which based on the user
input and present environment, i.e. obstacles, space constraints, other agents, etc.,
generates a trajectory, and trajectory tracking(or control) that given the specified
performance and robustness boundaries follows the trajectory.

Motion planning is one of the fundamental problems in robotics. In general, it
is tasked with moving an agent or an object from one location to another location
without colliding with the environment [91]. In this chapter we investigate kino-
dynamic sampling-based motion planning [92–94]. The advantage of kinodynamic
motion planning is that produced trajectories respect the differential constraints
imposed by the system dynamics. Moreover, in this chapter, we explore usage of
B-splines [95] to generate smooth kinodynamic trajectories satisfying both the spa-
tial and dynamical constraints. The B-splines have recently regained attention for
motion primitives generation in fast and iterative schemes for quadrotors and other
unmanned agents [96–98]. The trajectory tracking problem for surface vehicles or
vessels has been broadly studied and a comprehensive literature review is available

43
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in Subsection 1.1.1.
This chapter addresses two general challenges of PPC, namely, the control

input constraints by providing the stability conditions, and the underactuation
which requires modification of the original PPC scheme. Furthermore, we pose an
optimization problem with respect to spatial and dynamical constraints resulting in
the dynamically feasible collision-free trajectories.

The contributions of this chapter can be summarized in the following:

• PPC with control input saturation;

• The proposed modifications to PPC scheme to enable its application to the
underactuated 3-DoF USV, which consequently extends the proposed KDF
framework to the class of underactuated USVs;

• Theoretical stability guarantees for PPC of the considered system with input
constraints;

• The trajectory generation algorithm based on KDF-RRT that generates
smoother trajectories thus requiring less effort for the funnel control

It is worth noting that prescribed performance has been used for underwater
underactuated vehicles in [39]. However, in our work we develop a more general
framework that also includes motion planning, considers input constraints, and
provides real-world experimental results.

In this chapter, first we propose a general solution on how to handle the input
saturation in prescribed performance control schemes. Then, we focus on the needed
modifications that handle the underactuation for USV and present the stability
theorem with input saturations. We present and discuss the results obtained in
real-world open water experiments on Saab Piraya USV depicted on Fig. 4.1. Finally,
we propose an optimization algorithm to generate smooth collision-free reference
trajectories with respect to the given acceleration and velocity bounds and evaluate
it in KDF scheme.

Figure 4.1: Piraya autonomous unmanned surface vehicle
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4.1 Prescribed Performance Control With Input Saturation

In this section, we show how a system with control input saturation can be controlled
with PPC and provide the stability theorem for it. Let us consider an input affine
nonlinear system of the form

ẋ(t) = f(x(t)) + u(t) (4.1)

where x ∈ R, and let us define the control input u(t) with saturation as

u(t) =
{
v(t) |v| ≤ ū
ū sgn(v(t)) |v| > ū

(4.2)

where ū > 0, and v(t) will be defined shortly. The goal is to track the reference
r(t) and keep the error e(t) = x(t) − r(t) inside of a prescribed funnel. Then the
normalized error ξ(t) with respect to a performance function ρ(t) is

ξ(t) = e(t)
ρ(t) (4.3)

and the transformed error ε(t) is

ε(t) = 1
2 ln 1 + ξ(t)

1− ξ(t) (4.4)

The controller is designed as in (4.2) and

v(t) = −kε (4.5)

where k > 0. Furthermore, let us assume that there exists a constant F̄ > 0 such
that

F̄ ≥ |f(x)− ṙ − ρ̇ξ|, ∀t ≥ 0. (4.6)

Then, we can state the stability result in the following theorem.

Theorem 4.1. Consider the system (4.1) under the proposed controller with satu-
ration (4.2) and (4.5). If the following assumption hold

ū ≥ F̄ (4.7)

where F̄ is as in (4.6), ū is the input constraint, then it holds that |e(t)| < ρ(t) and
all closed-loop signals are bounded, for all t ≥ 0.

Proof. The first part of the proof follows the argument as in Theorem 3.1 in which it
is shown that there exist a local solution such that ξ(t) ∈ (−1, 1) for a time interval
t ∈ [0, τmax), and is therefore omitted. The second part shows that the normalized
error ξ remains in the compact subset of (−1, 1), which is achieved by considering a
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candidate Lyapunov function V = 1
2ε

2. The derivative of the candidate Lyapunov
function is

V̇ = εε̇ = ερ−1s(u+ f(x)− ṙ − ρ̇ξ) (4.8)

where s = 1
1−ξ2 is the derivative of the transformation as defined in Eq. (2.32) and

note that for ξ ∈ (−1, 1) it holds that ρ−1s = |ρ−1s|.
Choose v(t) = −kε and consider the two cases when (a) |v| ≤ ū and (b) |v| > ū.

(a) Let |v| ≤ ū. Then u = v = −kε and

V̇ = −kε2ρ−1s+ ερ−1s(f(x)− ṙ − ρ̇ξ)
≤ −kε2|ρ−1s|+ |ε||ρ−1s|F̄

Thus,

V̇ ≤ 0, ∀|ε| ≥ F̄

k

and by Theorem 2.4, ε is ultimately bounded

|ε| ≤ ε̄ := max
{
|ε(0)|, F̄

k

}
(b) Let |v| > ū. Then u = ū sgn(−kε) = −ū sgn(ε) and

V̇ = −ūρ−1sε sgn(ε) + ερ−1s(f(x)− ṙ − ρ̇ξ)
= −ūρ−1s|ε|+ ερ−1s(f(x)− ṙ − ρ̇ξ)
≤ −ū|ε||ρ−1s|+ |ε||ρ−1s|F̄
≤ −|ε||ρ−1s|(ū− F̄ )

Then,
V̇ ≤ 0, ∀ε, if ū ≥ F̄

and ε is bounded with its initial value |ε| ≤ ε̄ := |ε(0)|.

Therefore, in both cases there exist a finite ε̄ such that

|ξ(t)| ≤ ξ̄ = tanh ε̄ < 1

and the error e(t) stays inside of the funnel for t ∈ [0, τmax). By the direct application
of Theorem 2.3 we obtain that τmax =∞ and all closed-loop signals are bounded
for t ≥ 0.

To better explain the intuition behind the proof of Theorem 4.1, let us consider
the illustration on Fig. 4.2 for a system in R2. From the stability proof we obtain that
the trajectories in the non-saturated case will stay ultimately bounded with some ε̄
which is depicted on the first and second illustration. Moreover, if the control input
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ε1

ε2

ε(0)
ε̄ = F̄

k

|ε(0)| ≤ F̄
k

|v| ≤ ū

ε1

ε2

ε(0)
F̄
k

ε̄ = |ε(0)|

|ε(0)| > F̄
k

|v| ≤ ū

ε1

ε2

ε(0)
F̄
k

ε̄ = |ε(0)|

|v| > ū

Figure 4.2: 2D illustration of the trajectories of ε for the different considered cases.
Note that the radii of the balls between the cases are not drawn to scale. The first two
illustrations correspond to the case of ultimately bounded trajectories, while the third
corresponds to the saturated case when the trajectories (in red) will decrease until the
control input stops being saturated. In the first illustration the initial state is inside of
the ball of radius F̄

k
, while in the second two the initial state is outside.

is saturated and assumption (4.7) holds, the Lyapunov function is asymptotically
decreasing while the input is saturated. This is depicted on the third illustration.
Because |ε| is also decreasing, eventually, the control input |v| will decrease below the
input constraint and we will again have the first case when the control is ultimately
bounded. Note that the case when |ε(0)| ≤ F̄

k and |v| > ū is not possible because
k|ε(t)| = |v| > ū ≥ F̄ ≥ k|ε(0)| is a contradiction for t = 0. The control input,
however, can become saturated during the transient response which corresponds to
ε(t) being at the boundary of the inner ball of radius F̄

k but it will remain inside of
the ball.

4.2 Prescribed Performance for USV

We consider the boat USV with one rotating thruster at the rear. The model is
described in more details in Subsection 2.3.2, and we state it here for completeness.

η̇b = Rz,ψ(ψb)νb (4.9a)
Mν̇b +C(νb)νb +D(νb)νb = τact + τd (4.9b)

where ηb = [x, y, ψ], (x, y) ∈ R2 is the position in the world frame, ψ ∈ [0, 2π) is
the rotation of the boat in the world frame, νb = [u, v, r] is the velocity in the body
frame, where u, v, r are forward velocity (surge), lateral velocity (sway) and angular
velocity in yaw, respectively. M is the inertia matrix, C(νb) denotes the Coriolis
and centripetal effects, D(νb) is the drag matrix. τd are unknown disturbances,
and we also consider the drag induced by the relative velocity of the ship and
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surrounding water as a disturbance. This leads to a linear damping matrix that is
valid for low relative velocities, while at higher velocities nonlinear term dominates
and discrepancies in the model are expected.

For the configuration with a thruster located at the rear

τact =

XY
N

 =

 FT cos(αr)
FT sin(αr)

∆xFT sin(αr)


where ∆x > 0.

The underactuation stems from the fact that only two control inputs FT and
αr are available for control of the 3-DoF system. Moreover, two elements of τact
are linearly dependent, i.e. Y ∝ N , thus limiting the controlled behaviour of the
dynamical system. Given the aforementioned observations, the dynamics in (4.9)
can be rewritten as

mu̇ = Xuu+mvr +X + τd,x (4.10a)
mv̇ = Yvv −mur + Y + τd,y (4.10b)
Iz ṙ = Nrr +N + τd,ψ (4.10c)

where m is the mass of the USV, Iz is the moment of inertia around z-axis, and
Xu, Yv, Nr are negative hydrodynamic damping coefficients.

We consider the tracking control problem of given time-varying reference tra-
jectories pr = [px,r, py,r]T : [0,∞) → R2 for the position in 2D with prescribed
performance. pr are assumed smooth functions of time with bounded first and
second derivatives.

In order to accommodate the PPC methodology for the underactuated USV, let
us consider the errors between the position p = [px, py]T and given reference pr in
R2 space

ex = px,r − px,
ey = py,r − py.

Then, we introduce the following transformation and define the distance error ed
and orientation error eo as

ed =
√
e2
x + e2

y, (4.11)

eo = ex
ed

sinψ − ey
ed

cosψ = sinψe (4.12)

where ψe is the angle between ~ed = [ex, ey] and the orientation vector ~o =
[cosψ, sinψ]. that is defined as the unit vector representing the orientation. eo
can be understood as eo = ~ed

‖~ed‖ · ~n, where ~n = [sinψ,− cosψ]T is a unit vector
orthogonal to the orientation vector ~o and ed = ‖~ed‖. The considered transformation
and errors in NED (North-East-Down) inertial frame are depicted on Figure 4.3.
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Figure 4.3: Sketch of the considered transformation.

The control objective is to guarantee that the distance and orientation errors
evolve strictly within a funnel dictated by the corresponding exponential performance
functions ρd(t), ρo(t), which is formulated as

|ei(t)| < ρi(t), i ∈ {d, o} (4.13)

for all t ≥ 0, given the initial funnel compliance |ei(0)| < ρi(0), for i ∈ {d, o}. The
adopted exponentially-decaying performance functions are

ρi(t) = (ρi,0 − ρi,∞)e−lit + ρi,∞, i ∈ {d, o}. (4.14)

4.3 Reformulating the Model

We use the specific characteristics of the underactuated model of the USV in order to
design prescribed performance control. Since Y ∝ N and we can effectively control
one of them, the idea is to control the forward velocity dynamics u and rotation r,
while keeping lateral velocity v below a specified threshold. Using the introduced
transformation, the model can be rewritten as error dynamics

ėd = −u cosψe + v sinψe + ṗx,r cos(ψ − ψe) + ṗy,r sin(ψ − ψe) (4.15a)

ėo = r cosψe + u

ed
sinψe cosψe + v

ed
cos2 ψe (4.15b)

− ṗx,r
ed

(sinψe cos(ψ − ψe)− sinψ)− ṗy,r
ed

(sinψe sin(ψ − ψe) + cosψ)

mu̇ = Xuu+mvr +X + τd,x (4.15c)

mv̇ = Yvv −mur + 1
∆x

N + τd,y (4.15d)

Iz ṙ = Nrr +N + τd,ψ (4.15e)

where we used the observation that Y = 1
∆x
N . Furthermore, let the normalized

errors ξ(t) be defined as
ξ(t) = ρ(t)−1e(t).
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and the transformation normalized error ξ(t) with a strictly increasing, bijective
function T : (−1, 1)→ (−∞,∞)

T(ξ(t)) = atanh(ξ(t)) = 1
2 ln 1 + ξ(t)

1− ξ(t) . (4.16)

The derivative of this transformation is s = dT(ξ)
dξ = 1

1−ξ2 . Note that we omitted
subscripts for ξ, s and e as they will be introduced in the next section.

4.4 Control Design

Now, we describe the proposed control-design procedure.

PPC on distance error

We define the distance normalized error

ξd = ρd(t)−1ed(t) (4.17)

where ρd(t) is the prescribed performance function as defined in Eq. (4.14) such
that ρd(0) > |ed(0)|, and the transformation

εd = T(ξd(t))

where T is given in (4.16). We design the forward velocity reference signal as

ur = kdεd (4.18)

PPC on forward velocity error

Based on backstepping and in order to steer distance error to zero, we define the
error

eu = u− ur
and introduce the performance function ρu(t) with ρu(0) > |eu(0)| and the normal-
ized error

ξu = ρu(t)−1eu(t) (4.19)
and the transformation T gives us εu = T(ξu). Then, we can set

X = −kuεu (4.20)

PPC on orientation error

Following similar procedure as in first two parts, we define the normalized error and
transformation

ξo = ρo(t)−1eo(t)
εo = T(ξo(t))
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with appropriate ρo(t), ρo(0) > |eo(0)|, which leads to the angular velocity reference

rr = −koεo. (4.21)

PPC on angular velocity error

Finnaly, we define angular velocity error

er = r − rr,

its normalized version
ξr = ρr(t)−1er

and the transformation εr = T(ξr). At the end, we can set

N = −krεr. (4.22)

Remark 4.1. In the control design, we defined the orientation error as in (4.12)
which can grow when the distance error ed is approaching zero. This can be alleviated
by designing an asymmetric performance function ρd such that 0 < ρ

d
< ed(t) <

ρd(t), where ρ
d

is a positive constant. Furthermore, since ed is by definition ed ≥ 0,
implementing 1

ed
as 1

ed+δ , with a small positive δ, for example, δ = 0.01, will prevent
eo growing to infinity.

4.5 Handling Input Constraints

Let us introduce two virtual control inputs uα, uF ∈ R to derive their saturated
versions αr and FT , respectively. We define following two types of saturation functions

σαr (uα) =
{
uα, |uα| ≤ ᾱr
ᾱr sgn(uα), |uα| > ᾱr

and

σFT (uF ) =


F̄T , uF > F̄T

uF , uF ≤ F̄T
0, uF < 0

Moreover, we set the virtual control inputs in relation to the derived X and N as
following

X = uF cosuα
N = ∆xuF sin uα

X = −kuεu
N = −krεr

Therefore,

uα = arctan
(

N

∆xX

)
= arctan

(
kα
εr
εu

)
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where kα = kr
∆xku

, and set

αr = σαr (uα) = σαr

(
arctan

(
kα
εr
εu

))
. (4.23)

Furthermore,
uF = X

cosαr
= − kuεu

cosαr
and

FT = σFT (uF ) = σFT

(
− kuεu

cosαr

)
. (4.24)

This introduces another block within the closed-loop system and requires additional
stability analysis. The prescribed performance control inputs are in R2 while the set
of applicable control inputs is

U = [0, F̄T ]× [−ᾱr, ᾱr], (4.25)

where F̄T > 0 denotes the maximal thrust of the engine and ᾱr ∈ (0, π/6] represents
the maximum rudder position. In the next section, we show the conditions on the
input constraints under which the stability is preserved.

4.6 Stability Analysis

We present the stability guarantees of the proposed control design with input
constraints in the following theorem.

Theorem 4.2. Consider the transformed USV dynamics (4.15) under the proposed
control scheme (4.17)-(4.22). If the following assumptions hold

0 < FT ≤ FT (4.26a)
F̄u ≤ F̄T cos ᾱr (4.26b)
F̄r ≤ ∆xFT sin ᾱr (4.26c)

|ψe(0)| < π

2 (4.26d)

where F̄T and ᾱr are input constraints (4.25), FT is a positive constant, F̄u and F̄r
are ∣∣∣∣Xu

m
u+ vr + τd,x

m
− u̇r − ρ̇uξu

∣∣∣∣ ≤ F̄u∣∣∣∣NrIz r + τd,ψ
Iz
− ṙr − ρ̇uξu

∣∣∣∣ ≤ F̄r,
for t ≥ 0, then it holds that |ed(t)| < ρd(t), |eo(t)| < ρo(t) and all closed-loop signals
are bounded, for all t ≥ 0.
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Proof. The proof proceeds in four steps. First, we show the existence of a local
solution such that ξd(t), ξo(t), ξu(t), ξr(t) ∈ (−1, 1)4, for a time interval t ∈
[0, τmax). Next, we show that the proposed control scheme retains the aforementioned
normalized signals in compact subsets of (−1, 1), which leads to τmax =∞. In the
third step, we show that the underactuated part of the system described with
dynamics of v is bounded. Finally, we show that if the theorem assumptions hold
the input constraints do not affect the stability of the system, thus completing the
proof.

Part I: First, we consider the reduced version of the state vector x = [ed, eo, u, v, r]
of the transformed error dynamics in (4.15) as χ = [ed, eo, u, r]T ∈ X = R4 without
the underactuated part and we define an open set:

Ωξ =
{

(χ, t) ∈ X× [0,∞) : ξd ∈ (−1, 1), ξo ∈ (−1, 1),
ξu ∈ (−1, 1), ξr ∈ (−1, 1)

}
. (4.28)

Note that the choice of the performance functions at t = 0 implies that ξd(0),
ξo(0), ξu(0), ξr(0) ∈ (−1, 1)4, implying that Ω is nonempty. By combining (4.15),
(4.20), and (4.22), we obtain the closed-loop system dynamics χ̇ = fχ(χ, t), where
fχ : X × [0, τmax) is a function continuous in t and locally Lipschitz in χ. Hence,
the conditions of Theorem 2.2 are satisfied and we conclude that there exists a
unique and local solution χ : [0, τmax)→ X such that (χ(t), t) ∈ Ω for t ∈ [0, τmax).
Therefore, it holds that

ξd ∈ (−1, 1) (4.29a)
ξo ∈ (−1, 1) (4.29b)
ξu ∈ (−1, 1) (4.29c)
ξr ∈ (−1, 1) (4.29d)

for all t ∈ [0, τmax). We next proceed to show that the normalized errors in (4.29)
remain in compact subsets of (−1, 1). Note that (4.29) implies that that transformed
errors εd, εo, εu, εr, are well-defined for t ∈ [0, τmax).

Part II: Consider now the candidate Lyapunov function

Vo = 1
2ε

2
o

Differentiating Vo along the local solution χ(t) we obtain

V̇o =εosoρ−1
o (ėo − ρ̇oξo)

=εosoρ−1
o (r cosψe + u

ed
sinψe cosψe + v

ed
cos2 ψe

− ṗx,r
ed

(sinψe cos(ψ − ψe)− sinψ)− ṗy,r
ed

(sinψe sin(ψ − ψe) + cosψ)− ρ̇oξo).

Using r = rr + er, (4.21), the boundedness of ṗr, ρo and (4.29) we obtain

V̇o ≤ −ko|soρ−1
o |ε2

o cosψe + |soρ−1
o εo|F̄o
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where

F̄o ≥|er cosψe + u

ed
sinψe cosψe + v

ed
cos2 ψe

− ṗx,r
ed

(sinψe cos(ψ − ψe)− sinψ)− ṗy,r
ed

(sinψe sin(ψ − ψe) + cosψ)− ρ̇oξo|.

for all t ∈ [0, τmax). Given the initial funnel compliance and (4.26d), the term
cosψe(0) > 0 and from the Lyapunov derivative we can deduce the ultimate
boundedness of εo for

|εo| ≤ ε̄o = max
{
|εo(0)| , F̄o

ko

}
and we get

|ξo(t)| ≤ ξ̄o = tanh ε̄o < 1.
Moreover, this also guarantees that |ψr(t)| < π

2 , ∀t ≥ 0.
Following the same procedure for ed and considering a candidate Lyapunov

function Vd = 1
2ε

2
d, differentiating it and using u = ur + eu, (4.18), the boundedness

of ṗr, ρd and (4.29) we obtain

V̇d ≤ −kd|sdρ−1
d |ε

2
d cosψe + |sdρ−1

d εd|F̄d

where F̄d is a constant, independent of τmax, satisfying

F̄d ≥ |eu cosψe − v sinψe + ṗx,r cos(ψ − ψe)− ṗy,r sin(ψ − ψe)− ρ̇dξd|.

for all t ∈ [0, τmax). This shows ultimate boundedness of εd, i.e.

V̇d < 0 when F̄d
kd

< |εd|,

thus εd is ultimately bounded by Theorem 2.4 for

|εd| ≤ ε̄d = max
{
|εd(0)| , F̄d

kd

}
for t ∈ [0, τmax), and by employing the inverse of (4.16), we obtain

|ξd(t)| ≤ ξ̄d = tanh ε̄d < 1

Furthermore, consider a candidate Lyapunov function Vu = 1
2ε

2
u. Differentiating

we obtain

V̇u = εusuρ
−1
u

(
Xu

m
u+ vr + X

m
+ τd,x

m
− u̇r − ρ̇uξu

)
V̇u ≤ −ku|suρ−1

u |ε2
u + |suρ−1

u εu|F̄u
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where we used (4.20) and

F̄u ≥
∣∣∣∣Xu

m
u+ vr + τd,x

m
− u̇r − ρ̇uξu

∣∣∣∣ (4.30)

for all t ∈ [0, τmax). This shows ultimate boundedness of εu for

|εu| ≤ ε̄u = max
{
|εu(0)| , F̄u

ku

}
(4.31)

|ξu(t)| ≤ ξ̄u = tanh ε̄u < 1

Finally, following a similar procedure with Vr = 1
2ε

2
r, using

F̄r ≥
∣∣∣∣NrIz r + τd,ψ

Iz
− ṙr − ρ̇uξu

∣∣∣∣ . (4.32)

for all t ∈ [0, τmax), we conclude that

|εr| ≤ ε̄r = max
{
|εr(0)| , F̄r

kr

}
(4.33)

|ξr(t)| ≤ ξ̄r = tanh ε̄r < 1 (4.34)

which completes the second part of the proof.
Part III: In the third part, we consider the Lyapunov function

Vv = 1
2mv

2

and by differentiating along the solution of (4.15d)

V̇v = v(Yvv −mur + cYN + τd,y)
= −kvv2 + v(mur − cY krεr + τd,y)
≤ −kv|v|2 + F̄v|v|

where kv = −Yv > 0 due to the model properties, and

F̄v ≥ |mur + cY kr ε̄r + τd,y|, for all t ∈ [0, τmax)

Then,

|v| ≤ v̄ = max
{
|v(0)| , F̄v

kv

}
is ultimately bounded.
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Part IV: Finally, in the last part, we consider the input constraints. Since
cosαr ∈ [cos ᾱr, 1], therefore cosαr > 0,∀αr ∈ [−ᾱr, ᾱr]. Let us now, consider the
saturation effects on the thrust (4.24)

FT =


F̄T , for εu < − 1

ku
F̄T cosαr

− kuεu
cosαr , for − 1

ku
F̄T cosαr ≤ εu < 0

0, for εu ≥ 0

When εu ≥ 0 we have a case in which the actual velocity u of the surface vehicle is
greater than the reference velocity ur, and a desired action is to decrease the velocity
by reducing the thrust FT . Since the considered vehicle can not go backwards in
u slowing down is effectively achieved by setting the control input to zero and
allowing the negative error eu to grow again. However, in this case the stability is
not compromised. For − 1

ku
F̄T cosαr ≤ εu < 0 we have the unsaturated case as in

the second part of the proof. For the saturated case, εu < ε̃u := − 1
ku
F̄T cosαr, the

applied force is X = F̄T cosαr = −kuε̃u, then V̇u becomes

V̇u ≤ −ku|suρ−1
u |εuε̃u + |suρ−1

u εu|F̄u

Since εu < ε̃u < 0, then

V̇u ≤ −ku|suρ−1
u |εuε̃u + |suρ−1

u εu|F̄u
= −ku|suρ−1

u |(−|εu|)ε̃u + |suρ−1
u εu|F̄u

= |suρ−1
u εu|(kuε̃u + F̄u) ≤ 0

for kuε̃u + F̄u ≤ 0, which is valid because of the Assumption (4.26b), i.e., F̄u ≤
F̄T cos ᾱr ≤ F̄T cosαr = −kuε̃u, the Lyapunov function is asymptotically stable
during the saturated period and |εu(t)| and |ξu(t)| are upper bounded

‖εu‖ ≤ |ε̃u|, for all t ∈ [0, τmax)

|ξu(t)| ≤ ξ̃u = tanh ε̃u < 1.

In the second part of the proof, using (4.23), we consider the saturation effects on
the rudder angle

αr =

arctan
(
kα

εr
εu

)
, for | arctan

(
kα

εr
εu

)
| ≤ ᾱr

−ᾱr sgn(εr), for | arctan
(
kα

εr
εu

)
| > ᾱr

where we used the fact that arctan(·) is an odd function and that εu can only
approach zero from the negative side. The stability of the unsaturated case is shown
in the second part of the proof.
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For the saturated case it holds that N = −∆xFT sin ᾱr sgn(εr) then V̇r becomes

V̇r|srρ−1
r |(−εr∆xFT sin ᾱr sgn(εr) + |srρ−1

r εr|F̄r)
= |srρ−1

r |(−|εr| sin ᾱr∆xFT + |εr|F̄r)
= −|srρ−1

r εr|(∆xFT sin ᾱr − F̄r)

and due to Assumptions (4.26a) and (4.26c), i.e., F̄r ≤ ∆xFT sin ᾱr ≤ ∆xFT sin ᾱr,
V̇r ≤ 0 and εr is asymptotically stable during the saturated period and |εr(t)| and
|ξr(t)| are bounded. This concludes the proof.

Remark 4.2. As it has been already mentioned in the proof of Theorem 4.2, the
considered surface vehicle is only capable of going forward (without relying on
the drag or disturbances), thus u ≥ 0. Therefore, it is not possible to reduce the
forward velocity u when it is required by the reference (4.18) other than reducing
the forward thrust or cutting it completely and relying on the drag forces. Because
the model is unknown and no prediction is used this behaviour can occur which
is an inherent property of the considered underactuated vehicle. Because of these
reasons, Theorem 4.2 is not considering the non-controlled behaviour when FT = 0
in which both X and N are zero. However, this problem is present, especially in
the saturation effects on the rudder angle, where small values of εu cause αr to be
saturated while the actual orientation error might not require such action of the
control input αr. If one wants to consider these effects too, then the actuator model
must be augmented with a part that depends on the velocities of the vehicle and
surrounding water, and the position of rudder, which is outside of the scope of this
work. Therefore, we restrict ourselves only to the case when the applied thrust is
positive as in (4.26a).

Remark 4.3. The assumptions (4.26b) and (4.26c) can be intuitively explained
as the guarantee that for the worst case of the applied control inputs X and N
there exist enough energy to override the dynamics of the system. In a conservative
observation, constants F̄u and F̄r can be understood as the upper bounds on the
sum of four components that depend on the dynamics, disturbances, the derivative
of the reference signal, in this case u̇r and ṙr, respectively, and a term li(ρi,0−ρi,∞),
i = u, r, that prescribes the speed of convergence. Although we can tune, up to some
degree, the latter two, the burden is on the upper bound of the dynamics which can
cause these assumptions to be very conservative.

Remark 4.4. The requirement that |ψe(0)| < π
2 is needed to ensure the initial

compliance and boundedness of the orientation error. Moreover, it is shown that
ψe will remain bounded |ψe(t)| < π

2 , for all t ≥ 0, which means that the reference
trajectory is always kept in front of the boat. This is a reasonable behaviour given
the observations on the forward motion of the boat and Remark 4.2.
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Figure 4.4: Top-view of an experimental run with KDF

4.7 Experimental Results

The overall scheme is tested in the real-world open water experiments. The reference
trajectory is generated using KDF-RRT presented in [40]. The goal point is set
approximately 450 meters away from the initial position with obstacles present. KDF-
RRT takes into account the static obstacles and reference trajectory is generated with
a safety buffer zone that is approximately 10m inflated zone around the obstacles
can vary in the size.

The funnels are chosen to be static (ρ0 = ρ∞ and l = 0) during the 3 minute long
experiment because the desired error has the same performance criteria throughout
the whole experiment. Moreover, they are set relatively loose to avoid saturating
the control inputs too often. Thus, ρd = 28, ρu = 25, ρo = π

2 , ρr = 15.
The top view of the experiment is depicted on Figure 4.4. We can observe that

neglecting the deviation that occurred in the first moments of the experiment, the
surface vehicle was able to follow the trajectory. The initial deviation occurred
because the reference errors were relatively small to excite the control algorithm
to produce the control thrust FT so the boat was drifting due to the winds and
open water currents. After few seconds, when the errors were bigger the control
inputs were activated and the boat successfully recovered from the deviation. This,
however can be alleviated by tightening the funnels.

The funnels are depicted on Figure 4.5, and several interesting phenomena can
be observed. First, all signals are bounded, and moreover the orientation error is
always less than 1, which corresponds to |ψe(t)| < π

2 . The velocity error eu is always
nonpositive which is equivalent to εu ≤ 0. The distance error, is of course always
positive, but it is interesting to observe that it is kept relatively close to the funnel
boundary during the experiment. This can be explained by the fact that loose
funnels will activate the control thrust more and counteract the error when the error
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Figure 4.5: Funnels
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Figure 4.6: Control inputs

ed is relatively large.
On Figure 4.6, the control inputs are presented and periods of saturation are

visible. They occur especially in the first half of the experiment during which the
boat was expected to recover from the initial deviation and subsequent overshoots.
The most problematic behaviour is as expected when FT = 0, which causes αr to
be saturated although the orientation error might not require that action. This is
discussed in detail in Remark 4.2.

One of the reasons that was causing the unwanted saturations of the thrust FT
and then consequently the saturation of αr, is the reference trajectory. The original
KDF-RRT is not concerned with velocity and acceleration profiles because they
can be successfully handled via funnel control for fully actuated agents. Therefore,
although smooth, the reference trajectory could have significant perturbations in
velocity, acceleration and jerk profiles. This could cause the agent, like the one
considered in this chapter, to periodically accelerate and decelerate unnecessarily,
which is visible on Figure 4.7. Thus, in the next section we propose a trajectory
generation algorithm with jerk minimization to handle this issue.
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Figure 4.7: Forward velocity u and its reference ur in time.

4.8 Kinodynamic Motion-Planning

In this part, we present Kinodynamic motion planning via Funnel control with
Rapidly Exploring Random Trees (KDF-RRT) and propose enhancements with
respect to the smoothness, velocity and acceleration profiles of the trajectory and
safety of the agent near obstacles. KDF-RRT, introduced in [40], consists of RRT,
that samples in the extended free space and obtains a path, and an algorithm for
generating smooth time trajectories.

In this work, we consider cubic B-splines[95] and use some of their properties in
order to generate the smooth trajectory. We pose the smoothening problem of the
RRT obtained path {Xk}NX−1

k=0 , Xk ∈ R2, as an optimization problem. The uniform
B-splines are determined with N = NX + 4 control points {qk}N−1

k=0 , qk ∈ R2, and
M = N +d+ 1 uniformly separated knots tk = k∆t, k = 4, ..., N , where d = 3 is the
degree of the curve. The rest of the knots are defined as t0 = t1 = t2 = t3 = 0 and
tN = tN+1 = tN+2 = tN+3 = tN+4, to guarantee zero velocity and acceleration at
the initial and finial position imposed with qk = X0, for k = 0, 1, 2 and qk = XNX ,
for k = N−3, N−2, N−1. The goal is to minimize the distance from the parametric
2D curve f(tk) at each knot, which by using the properties for uniform B-splines, can
be evaluated on a segment t ∈ [tk, tk+1) with the knowledge of any four consecutive
control points Qk = [qk−3, qk−2, qk−1, qk]T , as

f(t) = uTMQk

with some abuse of notation, where u = [1, u, u2, u3]T is the basis vector with
u = t−tk

tk+1−tk ∈ [0, 1) and M is a fixed known matrix [99] independent of k

M = 1
6


1 4 1 0
−3 0 3 0
3 −6 3 0
−1 3 −3 0

 .
Then the distance at tk can be calculated as

‖f(tk)−Xk‖2 =
∥∥uT (0)MQk −Xk

∥∥2 =
∥∥mTQk −Xk

∥∥2
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where m = 1
6 [1, 4, 1, 0]T .

We are interested to also keep the trajectory inside of the prespecified velocity
vmax and acceleration bounds amax. Using the derivative properties of B-splines we
can obtain

vk = d(qk − qk−1)
tk+d − tk

= qk − qk−1

∆t (4.35)

ak = (d− 1)(vk − vk−1)
tk+d−1 − tk

= vk − vk−1

∆t (4.36)

for uniform knots. Moreover, it is beneficial to obtain as smooth curve as possible,
thus we include third derivative (jerk) minimization in the cost function as

‖jk‖∆t = 1
∆t ‖ak − ak−1‖∆t =

∥∥bTQk∥∥ (4.37)

where b = [−1, 3,−3, 1]T . Since we are optimizing over a fixed number of control
points and uniformly separated knots we can include ∆t in the optimization problem
in order to minimize the time duration as well.

Due to the fact that four consecutive control points create a convex hull around
a spline segment, the collision avoidance can be done using linear separation. The
obstacles are modeled as n-sided convex polygons with vertices at pjl ∈ R2 of a j-th
polygon, l = 1, ..., n, compactly written as Pj = [pj1, ...pjn]. The existence of a line
that separates the two sets is based on the existence of hij ∈ R2 and dij ∈ R, where
i = 0, ..., N − 4 denotes i-th convex hull around a spline segment determined with
Qi, such that

hTijQi > dij14, (4.38)
hTijPj < dij1n, (4.39)

for all i, j, where 1n ∈ Rn denotes a unit vector. The linear separation idea is
depicted on Fig. 4.8.

conv(Qi)

pr(t)

hi1

hi2

hi3

P1

P2

P3

Figure 4.8: The convex hull is linearly separable from the obstacles.
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Finally, we can state the nonlinear optimization problem

Problem 4.1 (Trajectory generation).

min
∆t,qk,hij ,dij

N−4∑
k=3

w1
∥∥mTQk −Xk−2

∥∥2 + w2
∥∥bTQk∥∥2 + w3∆t

subject to

qk = X0, k ≤ 2, (4.40a)
qk = XN−5, k ≥ N − 3, (4.40b)
‖qk − qk−1‖ ≤ vmax∆t, k ≥ 1, (4.40c)
‖qk − 2qk−1 − qk−2‖ ≤ amax∆t, k ≥ 2, (4.40d)
hTijQi > dij14, ∀i, j (4.40e)
hTijPj < dij1n, ∀i, j (4.40f)

Where the hard constraints (4.40a) and (4.40b) denote the initial and final con-
ditions, (4.40c)-(4.40d) velocity and acceleration constraints, (4.40e)-(4.40f) linear
separability conditions as explained previously. Based on the weight choices wi ≥ 0,
i = 1, 2, 3, in Problem 4.1, we can prioritize between the three objectives, namely,
fitting the curve to the RRT obtained path, minimizing the jerk and minimizing the
time, respectively. Note that we shifted indices of Qk such that the control points
are not optimized over the fixed control points determining the initial and final
values of the curve.
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Figure 4.9: The figure shows two runs of the trajectory generation algorithm with
RRT and the same setup of obstacles as in the real-world experiments. Two different
RRT paths were obtained for comparison. The trajectory is then generated using the
optimization problem in Problem 4.1. Moreover, we show the result of the optimization
without RRT points with w1 = 0 in green. Note that interpolating through the RRT
points only would result in a hard trajectory to follow.
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Also note that, it is possible to choose w1 = 0 and thus completely avoid usage
of RRT path. However, this option results with significantly higher execution time
in the simulations, therefore making the RRT path a useful prior for the curve
generation. A simulation example of the presented trajectory generation algorithm
with vmax = 10, amax = 2 is given on Fig. 4.9.
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Figure 4.10: Simulated top view
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Figure 4.11: Funnels

The execution of the trajectory as well as the funnels and control inputs, with
forward velocity comparison are given on Fig. 4.10-4.13. In these simulations, for
the sake of fair comparison we added white noise and kept the funnels same, except
ρd(t) which has been tightened. It can be clearly observed that the tracking and
utilization of the control inputs is considerably better. The inputs are only saturated
in the beginning and in the end of the simulation run.
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Figure 4.12: Control inputs
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4.9 Conclusion

In this chapter, we proposed an improved kinodynamic motion planning via funnel
control (KDF). We proved the stability under input constraints and system under-
actuation. The presented framework is tested in real-world experiments. Moreover,
a comparison with simulation results obtained using the proposed trajectory genera-
tion algorithm is provided. In the future work, it may be beneficial to explore the
effect of the funnel size and performance functions on the behaviour of the vehicle.
Moreover, we plan to redesign the motion planning procedure with B-splines as an
iterative online scheme suitable for dynamic obstacles and environments.



Chapter 5

Multi-Agent Rendezvous with Distributed
Predictive Control

In the previous two chapters, we elaborated on our developed trajectory tracking
algorithms for the considered underactuated unmanned vehicles. The next two
chapters are devoted to coordination and control of these agents considered as
a multi-agent system. As motivated in Chapter 1, this is a very active research
area that seeks for solutions to enable more autonomous behavior and operation of
unmanned agents and multi-agent systems as a whole. Because multi-agent systems
are composed of agents with embedded computing and communication units, a
distributed control scheme is the most common control approach to these types of
problems. A comprehensive literature review is available in Subsection 1.1.2.

This chapter addresses the rendezvous problem of a multi-agent system, that is
formulated in general as Problem 1.2. We consider rendezvous control through Dis-
tributed MPC (DMPC), where the agents use an aperiodic exchange of information
to negotiate and update their rendezvous point. The agents achieve cooperation
through the iterative updates of the shared rendezvous point. The exchange of
information occurs only when it is necessary to maintain the feasibility of the
control action, thus reducing the necessary communication between the agents. The
control algorithm is applied to nonlinear heterogeneous agents with state and input
constraints, and tested and evaluated in simulation on an example of a UAV landing
on a USV.

The main contributions presented in this chapter are published in [44] with
addition of a stability proof and are outlined here as follows:

• We present a distributed rendezvous algorithm that enables the aperiodic
communication between the agents based on the deviations from the predicted
trajectory, thus eliminating unnecessary communication.

• Moreover, we synthesize the time-varying distributed terminal sets for tracking
that depend on the rendezvous point. These terminal sets are the main
ingredient in the recursive feasibility proof.

65
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• Finally, we prove that the proposed algorithm guarantees recursive feasibility
and stability.

The chapter is organized as follows. First, we present the distributed optimal
control problem formulation and the rendezvous algorithm with triggering conditions.
Then, we state the feasibility and stability theorems and provide proofs for them.
Finally, we describe the models and their constraints which are used to generate the
simulation results.

5.1 Distributed Optimal Control Problem

We consider M agents with nonlinear dynamics and additive disturbances:

ẋi(t) = fi(xi(t),ui(t)) +wi(t),
yi(t) = Cixi(t),

(5.1)

for t ≥ t0, where for each i = 1, ...,M , the state vector xi(t) ∈ Rni is measurable,
ui(t) ∈ U ⊆ Rmi is the control input, the output yi(t) ∈ Rp consists of the states
we aim to control for the rendezvous, wi(t) ∈ W ⊆ Rni is the additive bounded
disturbance, and t0 ∈ R is the initial time.

The standard MPC assumptions are needed as stated in Assumption 2.1, which
we state here again for completeness.

Assumption 5.1. It is assumed that

(i) the function f : Rn × Rm → Rn is twice continuously differentiable and
f(0,0) = 0;

(ii) U ⊆ Rm is compact, convex and 0 ∈ Rm is contained in U ;

(iii) the system in (2.35) has a unique solution for any initial condition x0 ∈ Rn,
any piecewise continuous and right-continuous control u : [t0,∞) → U , and
any disturbance w : [t0,∞)→W;

(iv) for the linearized system around the origin without disturbances, i.e., ẋ =
Ax(t) + Bu(t), where A = ∂f

∂x (0,0) and B = ∂f
∂u (0,0), the pair (A,B) is

stabilizable;

(v) for the linearized dynamics around the origin, there exists a matrix K such
that Ak = A+BK is a stable Hurwitz matrix.

Remark 5.1. Note that the requirement fi(0,0) = 0 is not restricted to the origin,
but can be shifted to any equilibrium (x̄i, ūi), as well as the linearization in (iv).
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Let x̂i(s; tk), ŷi(s; tk) be the nominal state trajectory and output, respectively,
calculated at time instant tk given by

˙̂xi(s; tk) = fi(x̂i(s; tk),ui(s; tk)),
ŷi(s; tk) = Cix̂i(s; tk),

(5.2)

for s ∈ [tk, tk + T ].
The control objective is to steer the relevant states of every agent yi to a

rendezvous point θ ∈ Rp in finite time. The set of all admissible rendezvous points
is denoted with Θ ⊆ Rp.

Let us define a set Zi(θ) for each agent i and argument θ ∈ Rp with a tuple
(x̄i, ūi, ȳi) such that

Zi(θ) = {(x̄i, ūi, ȳi) ∈ Rni+mi+p : 0 = fi(x̄i, ūi), ȳi = Cix̄i = θ}

Assumption 5.2. There exists a non-empty compact and convex set Θ ⊆ Rp such
that ∀θ ∈ Θ, we have Zi(θ) 6= ∅ for all i.

Considering the motivating application, one can think of the set Θ as an inflated
convex set in the plane of the USV landing platform that covers the unoccupied
space that UAV and USV can reach.

By this assumption, it is also assumed that there exists an equilibrium for which
the output reference θ is attained for each agent. Moreover, such an equilibrium can
be explicitly found with a given θ by the following linear mappings Hxi ∈ Rp×ni ,
Hui ∈ Rp×mi

x̄i = Hxiθ, ūi = Huiθ. (5.3)

The following assumption is made to ensure that a such rendezvous point is reachable
(in a similar manner to Assumption 2. in [100]):

Assumption 5.3. The time planning horizon T is long enough to reach at least
one θ in the rendezvous set Θ.

We choose the cost function to penalize the deviations of the system trajectories
from the desired terminal steady-state (x̄i, ūi, ȳi):

Ji(x̂i(tk),ui(tk), x̄i, ūi) = ‖x̂i(tk + T ; tk)− x̄i‖2Pi

+
∫ tk+T

tk

‖x̂i(s; tk)− x̄i‖2Qi + ‖ui(s; tk)− ūi‖2Ri ds,
(5.4)

where Qi, Ri, Pi are positive definite weighting matrices, T > 0 is the time duration
of prediction horizon.

Note that this formulation is a bit different from the standard tracking MPC
formulations (see e.g. [101]), because of Assumption 5.2 that such a tuple (x̄i, ūi, ȳi)
exists and is attainable.
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Moreover, a standard formulation of distributed MPC for rendezvous (or con-
sensus) as in [50], assumes exchange of predicted trajectories of the agents that are
then utilized in the cost instead of a terminal steady-state. These algorithms exhibit
very good convergence properties, the rendezvous location is computed online and it
is not needed to be specified a priori, but they also require a significant usage of the
communication channel and data, that could be a disadvantage in some practical
multi-agent scenarios.

Before we formulate the distributed optimal control problem for rendezvous we
will present a lemma on the local invariant terminal sets around a steady-state that
is formulated following the ideas of [51], [102], [54].

Lemma 5.1. For the nominal system (5.2), if Assumption 5.1 holds, then there
exists a positive constant αi ∈ (0, ᾱi], a matrix Pi = PTi � 0, and a local state
feedback control law κfi(xi, x̄i, ūi) = ūi + Ki(xi − x̄i) ∈ Ui for a steady-state x̄i,
satisfying

∂Vf,i
∂xi

T

fi(xi − x̄i, κfi(xi, x̄i, ūi)) ≤ −
1
2 ‖xi − x̄i‖

2
Q∗
i

for all xi ∈ Xf,i(x̄i, αi), where Vf,i(xi, x̄i) = ‖xi − x̄i‖2Pi , Q
∗
i = Qi +KT

i RiKi and
the terminal set

Xf,i(x̄i, αi) =
{
xi ∈ Rni : Vf,i(xi, x̄i) ≤ α2

i

}
. (5.5)

The proof is available in Appendix 5.A. From the proof of Lemma 5.1 it immedi-
ately follows how ᾱi can be obtained.

Corollary 5.1. (Calculation of ᾱi) The upper bound ᾱi on αi, can be calculated
by solving the following optimization problem

ᾱi = max
xi

(xi − x̄i)TPi(xi − x̄i) (5.6a)

s.t. 16
λ2

min(QPi)
φi(xi)TPiφi(xi) ≤ (xi − x̄i)TPi(xi − x̄i) (5.6b)

ūi +Ki(xi − x̄i) ∈ Ui. (5.6c)

where φi(xi) = fi(xi − x̄i, κfi(xi, x̄i, ūi))−Ak,i(xi − x̄i), and QPi = P
− 1

2
i Q∗iP

− 1
2

i .

Now, we can formulate the distributed optimal control problem with respect to
our objective.

Problem 5.1. At time tk with initial states xi(tk), i = 1, ...,M , and given reference
θ(tk), the distributed optimal control problem is formulated as

min
ui(·),x̄i,ūi

Ji(x̂i(tk),ui(·), x̄i, ūi) (5.7a)
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subject to

˙̂xi(s; tk) = fi(x̂i(s; tk),ui(s; tk)), s ∈ [tk, tk + T ] , (5.7b)
ŷi(s; tk) = Cix̂i(s; tk), (5.7c)
x̂i(s; tk) ∈ Xi, (5.7d)
ui(s; tk) ∈ Ui, (5.7e)
x̄i = Hxiθ(tk), (5.7f)
ūi = Huiθ(tk), (5.7g)
x̂i(tk + T ; tk) ∈ Xf,i(x̄i, αi), (5.7h)

for agents i=1, ...,M . For the initial time t0, k=0, the agents minimize the cost
(5.7a) subject to (5.7b–5.7h) for a given T > 0.

5.2 Event-Triggered DMPC Rendezvous Algorithm

The distributed optimal control problem stated in Problem 5.1 depends on θ(tk)
which is the rendezvous point in the subset of the output space Rp as stated in
Assumption 5.2. Before we present the algorithm, we need to define how θ(tk) is
going to be initialized and updated.

The rendezvous point θ(tk) at k = 0 can be initialized as a weighted average of
the initial agent positions in the output space

θ(t0) = 1
M

M∑
i=1

ciyi(t0), s.t. 1
M

M∑
i=1

ci = 1, ci ≥ 0, (5.8)

where M is the number of agents.
We assume that there exists ci, i = 1, ...,M such that θ(t0) ∈ Θ according to

Assumption 5.2. If the agents are operating in an unconstrained and obstacle-free
output space, then any ci will result with θ(t0) ∈ Θ. If this is not the case, then
an admissible ci would need to be determined by another layer of the optimization
taking into account output-space constraints of all agents. Moreover, an interesting
topic to investigate in the future work can include the conditions such that θ(tk)
remains in a constrained output space Θc.

Let us denote the terminal output offset term Vo as

Vo = Vo(ŷi,θ) = Vo(ŷi(tk + T ; tk),θ(tk))
= ‖ŷi(tk + T ; tk)− θ(tk)‖22 .

(5.9)

After initialization, agent i updates θ(tk) according to the rule

θ(tk+1) =
{

θ(tk) Vo ≤ ε
θ(tk)− ηvθ(tk) Vo > ε

(5.10)
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where η and ε are tuning parameters and vθ(tk) is defined as:

vθ(tk) = ∂Vo
∂θ(tk)

∥∥∥∥ ∂Vo
∂θ(tk)

∥∥∥∥−1

2
. (5.11)

Parameter η is a step size that must be chosen as a small value, in order to
avoid overshooting, and it quantifies the correction of θ in the output space. The
rendezvous algorithm is presented as Algorithm 1.

Algorithm 1 Event-triggered DMPC Rendezvous
Require: prediction horizon T ; sampling period δ; weighting matrices Qi, Ri, Pi;

initial states xi,0 at time t0 for each agent i = 1, ...,M ; k = 0; ci, θ(t0) according
to (5.8) and parameters η and ε;

1: for each agent i = 1, ..,M do
2: if new data message received then
3: download θ(tk)
4: û∗i , ŷ

∗
i ← solve optimization problem (5.7)

5: if Vo(ŷi(tk + T ; tk), θ(tk)) > ε then . Rendezvous condition
6: θ(tk+1)← θ(tk)− ηvθ(tk)
7: send data message {θ(tk+1)} to other agents
8: if ‖yi(tk)− θ(tk)‖ > ε then . Stopping condition
9: apply û∗i (tk; tk)

10: k ← k + 1

Remark 5.2. If the rendezvous condition at line 5 in Algorithm 1 is not satisfied,
the only information that is sent from an agent i at time tk is θ(tk), and other agents
use that θ as they receive it. Therefore, the algorithm is able to run in parallel and
sequentially, see e.g. [103]. The parallel implementation of the algorithm assumes
execution of the for loop (lines 2-10) by each agent at every time step.

Remark 5.3. If one of the agents terminates the execution of its part of the
algorithm because, for example, it reached the rendezvous location before the
duration of the prediction horizon T , then it will stay at that location until the
end, unless the rendezvous location is changed. The change of location triggers
the recomputation of the optimization problem and tests rendezvous and stopping
conditions, which determine the further execution of the algorithm. Note that the
choice of weights ci can affect which agent may reach the rendezvous location earlier,
therefore, in the scenarios with USV and UAV, we always prioritize that USV
reaches the rendezvous location first.

5.3 Recursive Feasibility

In order to show feasibility of Problem 5.1, we will assume the initial feasibility and
then show that the problem is recursively feasible.
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Assumption 5.4. Problem 5.1 is feasible at time t0 for each agent i = 1, ...,M
with θ(t0) initialized as in (5.8).

The main point in the proof of the rendezvous algorithm is to ensure feasibility
on the consecutive steps where the rendezvous reference point θ(tk) is updated. The
space shift of the terminal set Xf,i(x̄i, αi) that occurs due to the reference change
θ(tk+1) 6= θ(tk) at some tk can be quantified using the update rule (5.10).

Lemma 5.2. For the nominal system with dynamics in Eq. (5.2) and reference
change from x̄i(tk) to x̄i(tk+1), given a local terminal set

Xf,i(x̄i, αi) =
{
xi ∈ Rni : Vf,i(xi, x̄i) ≤ α2

i

}
it holds that if

x̂i(tk + T ; tk) ∈ Xf,i(x̄i(tk), αi(tk))

then
x̂i(tk+1 + T ; tk+1) ∈ Xf,i(x̄i(tk+1), αi(tk+1))

where αi(tk+1) = αi(tk) + η ‖Hxivθ(tk)‖Pi .

Proof. Let us consider the optimal control law û∗i (s; tk) for interval s ∈ [tk, tk + T ]
obtained at tk by solving Problem 5.1 and a candidate control law

ũi(s; tk+1) =
{

û∗i (s; tk) s ∈ [tk+1, tk + T ]
ūi +Ki(x̃i(s; tk)− x̄i) s ∈ [tk + T, tk+1 + T ]

(5.12)

that generates the system trajectory x̃i(s; tk+1) based on the dynamics in (5.2). It
holds that x̃i(tk + T ; tk+1) ∈ Xf,i(x̄i(tk), αi(tk)) and, due to the invariance of the
terminal set, x̃i(tk+1 + T ; tk+1) ∈ Xf,i(x̄i(tk), αi(tk)), i.e.

‖x̃i(tk+1 + T ; tk+1)− x̄i(tk)‖2Pi ≤ α
2
i (tk). (5.13)

Then,

‖x̃i(tk+1 + T ; tk+1)− x̄i(tk+1)‖Pi
≤ ‖x̃i(tk+1 + T ; tk+1)− x̄i(tk)‖Pi + ‖x̄i(tk)− x̄i(tk+1)‖Pi
(5.13)
≤ αi(tk) + ‖x̄i(tk)− x̄i(tk+1)‖Pi

(5.3)= αi(tk) + ‖Hxiθ(tk)−Hxiθ(tk+1)‖Pi
(5.10)= αi(tk) + η ‖Hxivθ(tk)‖Pi = αi(tk+1).

Hence, x̃i(tk+1 + T ; tk+1) ∈ Xf,i(x̄i(tk+1), αi(tk+1)).

Now, we can state the recursive feasibility theorem.
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Theorem 5.1. For the agents i = 1, ...,M with system dynamics given by (5.1),
for which Assumptions 5.1 and 5.4 and Lemmas 5.1 and 5.2 hold, Problem 5.1 is
feasible at tk, k ≥ 0.

Proof. If the state xi(tk+1) ∈ Xf,i ⊆ Xi then by the invariance of the terminal set
stated in Lemma 5.1, it will remain in that set. Therefore, using the terminal control
law κfi(xi, x̄i, ūi) = ūi + Ki(xi − x̄i) ∈ Ui, the cost function in (5.4) is bounded
and all constraints in (5.7) are satisfied.

Let us consider again the obtained optimal control law û∗i (s; tk) at tk for interval
s ∈ [tk, tk + T ] and a candidate control law according to Eq. (5.12) that generates
the system trajectory x̃i(s; tk+1) based on the dynamics in (5.2).

Because of feasibility at tk, the state x̃i(s; tk+1) ∈ Xi for s ∈ [tk+1, tk + T ] and
x̃i(tk + T ; tk+1) ∈ Xf,i(x̄i(tk), αi(tk)). Moreover, due to the terminal set properties
from Lemma 5.1, and the result of Lemma 5.2 the candidate control law will
ensure that the terminal state x̃i(tk+1 + T ; tk+1) is in the shifted local terminal set
x̃i(tk+1 + T ; tk+1) ∈ Xf,i(x̄i(tk+1), αi(tk+1)), which proves recursive feasibility.

Note that this result only guarantees feasibility and does not imply convergence,
which will be examined later in the chapter.

5.4 Simulation Results

In this section we evaluate Algorithm 1 implemented on nonlinear models of a
quadrotor and a boat. The goal is to land the quadrotor on a boat landing platform,
which is 1m×1m in size. We denote the quadrotor and the boat model and parameters
with the subscripts i = q and i = b, respectively.

5.4.1 Models and constraints

The simplified version of the quadrotor model used in this section assumes that
RT (η) = I3 which is a reasonable assumption if the perturbations from hover flight
are small [74]. Moreover, we assume that the attitude dynamics are approximated
with the first order dynamics for roll and pitch and that yaw can be instantaneously
achieved [23], which allows us to directly set φcmd, θcmd, and ψ̇cmd. Then the
approximated dynamics are

φ̇ = 1
τφ

(kφφcmd − φ),

θ̇ = 1
τθ

(kθθcmd − θ),

ψ̇ = ψ̇cmd

where τφ, kφ, τθ, kθ are parameters that needs to be identified.
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The state vector of the quadrotor model xq is chosen as

xq = [px, py, pz, vx, vy, vz, φ, θ, ψ]T ,

and the input as uq =
[
Fz, φcmd, θcmd, ψ̇cmd

]T .
The position in R3 is represented with yq = [px, py, pz]T , and [ṗx, ṗy, ṗz]T =

[vx, vy, vz]T . Thus, matrix Cq = [I3×3, 03×6].
On the quadrotor we imposed several constraints to ensure the proper behaviour:√

v2
x + v2

y + v2
z ≤ 17.0 m/s,

|vz| ≤ 4.0 m/s,
|φ| ≤ 0.5 rad,
|θ| ≤ 0.5 rad,

|v̇z,cmd| ≤ 2.0 m/s,
|φcmd| ≤ 0.5 rad,
|θcmd| ≤ 0.5 rad,
|ψ̇cmd| ≤ π/2 rad/s.

The constraints in the left column constitute the set Xq. The first two constraints
are related to the maximum velocity and vertical velocity respectively, which we
want to limit to prevent fast descent. The latter two are constraints on the roll and
pitch angles. The set Uq is formed of constraints in the right column.

The boat model is chosen as a fully actuated dynamical model with the linear drag
for the purpose of these simulations. The state vector of boat model xb is chosen as
xb = [px, py, ψ, u, v, r]T , and input ub = [X, Y, N ]T . The position in R3 space
is represented with yb = [px, py, 0]T . Matrix Cb is given as Cb = [diag(1, 1, 0), 03×3].

The boat model set constraints Xb also has the velocity constraints and constraint
on the angular velocity r, i.e.

√
v2
x + v2

y ≤ 15.0 m/s and |r| ≤ 0.5 rad/s. Finally, the
input constraints Ub has constraints on N , i.e. |N | ≤ 0.5 rad/s2.

5.4.2 Results
Algorithm 1 is initialized with the following parameters. The planning horizon
is set as T = 3s and sampling period is δ = 0.1s for both agents. The update
parameters for θ(tk) are η = 0.1 and ε = 0.1. For the quadrotor we choose the
weighting matrices as Qq = diag(30, 30, 6, 1, 1, 1, 1, 1, 1), Rq = I and obtain Pq and
ᾱq = 0.2064 according to the optimization problem (5.6) in Corollary 5.1. For
the boat Qb = diag(5, 5, 1, 1, 1, 1), Rb = I, ᾱb = 0.7129. This choice of the tuning
parameters prioritizes the synchronization of the agent’s position in the xy-plane
such that the quadrotor is above the boat and landing platform before the final
descent.

We set the initial states of the quadrotor and boat such that the position
in the output space is yq = [4, 2, 5]T and yb = [−3,−1.5, 0]T , respectively. To
determine the initial θ(t0) according to Eq. (5.8) we choose cq = 2/3 and cb = 4/3.
If the initial θ(t0) is not changed then the agents will rendezvous at a point
θ(t0) = [−0.67,−0.33, 0]T that is twice closer to the boat than to the quadrotor
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Figure 5.1: Nominal case with terminal constraints.

as the boat is slower. This is visible in Fig. 5.1 for the nominal case with terminal
constraints without any disturbances. The difference between the initially predicted
and actual trajectories results from the change of θ(tk) that occurred for the first
four steps and θ(tfinal) = [−0.67,−0.73, 0]T . A perspective view of the same setup
is shown in Fig. 5.2.
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Figure 5.2: Perspective view of the setup for nominal case with terminal constraints.
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In order to show the performance of the update rule for θ(tk) we added a strong
wind disturbance in the positive y-axis direction acting from t1 = 0.5s until t2 = 2s,
depicted in Figures 5.3 and 5.4. This causes the quadrotor to drift several meters
in the direction of the disturbance. However, the feasibility is preserved at all time
steps, and because of the imposed terminal constraints the updates of θ(tk) are
small.
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Figure 5.3: Strong wind active from t1 = 0.5s until t2 = 2s, case with terminal
constraints
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Figure 5.4: Strong wind active for t = [0.5s, 2.0s], case with terminal constraints.
Arrows show wind direction.
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Finally, because we did not experience any feasibility issues, we removed the
terminal constraints (5.7h) from Problem 5.1 to test Algorithm 1 and the update
rule. In Fig. 5.5 we can notice that the boat made adjustments and approached to
the quadrotor as a result of the rendezvous point updates by the quadrotor. The
updates of θ(tk) are shown in Fig. 5.6. The bigger changes in θ(tk) compared to the
case with the terminal constraints are due to the update rule. Vo(ŷi(tk+T ; tk),θ(tk))
is evaluated at the last predicted ŷi(tk + T ; tk) output for which the corresponding
state x̂i(tk + T ; tk) belongs to a very small set Xf,i(x̄i, ᾱi).
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Figure 5.5: Strong wind active for t = [0.5s, 2.0s], case without terminal constraints.

0 1 2 3 4 5 6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time [s]

P
os
it
io
n
[m

]

θ(tk) position update

θx(tk)

θy(tk)

Disturbance start/stop

Figure 5.6: θ(tk) evolution in time for the case without terminal constraints



5.5. Convergence Without Terminal Constraints 77

5.5 Convergence Without Terminal Constraints

Analyzing the presented simulation results, one can notice that the terminal con-
straints can degrade the performance. For the current distributed terminal sets for
tracking the rendezvous location, the agent usually terminate somewhere in the
terminal set and not on the exact rendezvous location. However, by simply removing
the terminal set constraints both agents terminate at the exact rendezvous location.
Moreover, the recalculation of the distributed optimal control problem (DOCP)
given as Problem 5.1 takes considerably less time than with the terminal constraints.

There have been several works on MPC without terminal constraints. One line
of work follows the approach given in [104] which implicitly assumes existence and
satisfaction of the terminal constraints, and the other one [79], [105] establishes
convergence result by completely removing them. The paper [106] advocates for
the usage of MPC with terminal constraints and regards the first approach as an
approach with the implicit definition of the terminal constraints.

Since the implementation of Problem 5.1 is discrete, i.e. the model (5.7a) and
cost (5.7b) are discretized, we conduct the convergence analysis with respect to the
discretized equivalent of Problem 5.1. The notation will be slightly different than in
the previous sections. We denote the system state trajectories with x(t), nominal
state trajectories with x̂(k|t) and optimal state trajectories with x̂∗(k|t) at timestep
k + t predicted at timestep t.

Let us consider a nonlinear discrete time system with additive disturbances

xi(t+ 1) = fi(xi(t),ui(t)) +wi(t), (5.14a)
yi(t) = Cixi(t). (5.14b)

Let x̂i(k|t), ŷi(k|t) be the nominal state trajectory and output, respectively, at time
k+t, k = 0, 1, ..., N calculated at time instant t, with assumption that x̂i(0|t) = xi(t),
governed by the following difference equation

x̂i(k + 1|t) = fi(x̂i(k|t),ui(k|t)), (5.15a)
ŷi(k|t) = Cix̂i(k|t). (5.15b)

Note that fi here is not the same as in (5.1) or (5.2), but its discretized version.
The main focus of this section is to prove that under the proposed rendezvous

update given with
θ(t+ 1) = θ(t)− ηvθ(t), (5.16)

the agents converge to the rendezvous location.
Let us denote the next steady state and corresponding input obtained from the

updated rendezvous location as

x̄+
i = Hxiθ(t+ 1), ū+

i = Huiθ(t+ 1).
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Let the cost function of an agent in Problem 5.1 be

Ji(x̂i,ui,θ, N, t) = ‖x̂i(N |t)− x̄i‖2Pi +
N−1∑
k=0

(
‖x̂i(k|t)− x̄i‖2Qi + ‖ui(k|t)− ūi‖2Ri

)
(5.17)

where we included the length of the prediction horizon N in the formulation. The
first term represents the terminal cost

Vfi(x̂i(N |t), x̄i) = ‖x̂i(N |t)− x̄i‖2Pi (5.18)

and the summand is the stage cost

li(x̂i(k|t),ui(k|t), x̄i, ūi) = ‖x̂i(k|t)− x̄i‖2Qi + ‖ui(k|t)− ūi‖2Ri (5.19)

Let the value function be

V Ni (xi(t)) = min
ui

Ji(x̂i,ui,θ, N, t). (5.20)

We define the region of attraction XROAi =
{
xi ∈ Xi : V Ni (xi) ≤ V Ni,max

}
of the i-th

DOCP controller as the set of states which can be steered to the desired state x̄i in
N steps or less.

The idea is to prove that for all initial states in a region of attraction XROAi the
value function decreases over time, thus, establishing the asymptotic convergence of
the agents under the proposed iterative update of the rendezvous location. This result
is summarized in the following theorem and the proof is available in Appendix 5.C.

Theorem 5.2. Given the bounds V Ni,max ∈ R>0, for all i = 1, ...,M , there exist
constants η, βi ∈ R>0, γi ≥ 1, and N0 ∈ N, such that for all N > N0 and all initial
conditions in the region of attraction xi(0) ∈ XROAi =

{
xi ∈ Xi : V Ni (xi) ≤ V Ni,max

}
,

the multi-agent system (5.15) under the rendezvous update rule (5.16) satisfies

‖xi(t)− x̄i‖2Qi ≤ V
N
i (xi(t)) ≤ γi‖xi(t)− x̄i‖2Qi

V Ni (xi(t+ 1))− V Ni (xi(t)) ≤ −
1
2 li(xi(t),ui(t), x̄i, ūi)

for all i and t ≥ 0. The sets XROAi are stabilized and agents converge to a rendezvous
location.

Corollary 5.2. The rendezvous update step η can be chosen as η = mini{η̄i} where

η̄i :=

√√√√ ( 1
2 + 2βi)li(xi(t),ui(t), x̄i, ūi)− 2βiV Ni,max

(1 + 1
2βi )λmax(Hvi)

and βi can be obtained as

0 < βi < β̄i := li(xi(t),ui(t), x̄i, ūi)
4(Vi,max − li(xi(t),ui(t), x̄i, ūi))

.
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The matrix Hvi = HT
xiPiHxi + (N − 1)(HT

xiQiHxi +HT
uiRiHui) is a positive semi-

definite matrix that depends on a priori known matrices Hxi and Hui , and tuning
matrices Qi and Ri.

5.6 Conclusion

In this chapter, we presented a rendezvous algorithm for the distributed MPC
scheme for agents with nonlinear and heterogeneous dynamics. The algorithm is
designed for the problem of autonomous cooperative landing of the quadrotor on
the autonomous boat. During the landing the agents communicate only when it is
necessary to update the rendezvous point and ensure the feasibility of the algorithm.
The effectiveness of the proposed algorithm is shown with the simulation of the
landing scenarios.

In future work, it can be beneficial to upgrade Theorem 5.2 and quantify the upper
bound on the disturbance such that feasibility and convergence of the algorithm
are preserved. Furthermore, it will be interesting to examine the behaviour of the
algorithm on real systems. The inclusion of obstacles and constraints in the output
space is the focus of the next chapter.
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5.A Proof of Lemma 5.1

Proof. The linearized system from Assumption 5.1 around a steady state (x̄i, ūi)
with the controller κfi(xi, x̄i, ūi) = ūi+Ki(xi−x̄i) is the closed-loop asymptotically
stable system ẋi = Ak,i(xi − x̄i) . The matrix Pi is such that following Lyapunov
equation holds

ATk,iPi + PiAk,i = −(Qi +KT
i RiKi) = −Q∗i .

Let us define an auxiliary function φi(xi) = fi(xi−x̄i, κfi(xi, x̄i, ūi))−Ak,i(xi−x̄i).
The derivative of Vf,i(xi, x̄i) = ‖xi − x̄i‖2Pi = (xi − x̄i)TPi(xi − x̄i) along a
trajectory of the nominal system ẋi = fi(xi − x̄i, κfi(xi, x̄i, ūi)) is

Vf,i(xi, x̄i) = (xi − x̄i)TPifi + fTi Pi(xi − x̄i)
= (xi − x̄i)TPi(φi(xi) +Ak,i(xi − x̄i)

+ (φi(xi) +Ak,i(xi − x̄i)TPi(xi − x̄i)
= −(xi − x̄i)TQ∗i (xi − x̄i) + 2(xi − x̄i)TPiφi(xi)
≤ −(xi − x̄i)TQ∗i (xi − x̄i) + 2 ‖xi − x̄i‖Pi ‖φ(xi)‖Pi

≤ −(xi − x̄i)TQ∗i (xi − x̄i)
(

1−
2 ‖xi − x̄i‖Pi ‖φi(xi)‖Pi
λmin(QPi) ‖xi − x̄i‖

2
Pi

)

≤ −‖xi − x̄i‖Q∗
i

(
1−

2 ‖φi(xi)‖Pi
λmin(QPi) ‖xi − x̄i‖Pi

)
where we used the facts that

aTPib ≤ ‖a‖Pi ‖b‖Pi
λmin(QPi) ‖a‖

2
Pi
≤ ‖a‖2Q∗

i
,∀a, b ∈ Rn

where QPi = P
− 1

2
i Q∗iP

− 1
2

i .
Because ‖φi(xi)‖Pi‖xi−x̄i‖Pi

→ 0 as ‖xi − x̄i‖Pi → 0, there exists ᾱi > 0 such that

‖φi(xi)‖Pi
‖xi − x̄i‖Pi

≤ λmin(QPi)
4 , for ‖xi − x̄i‖Pi ≤ ᾱi. (5.21)

Furthermore, there exists 0 < αi ≤ ᾱi such that for all ‖xi − x̄i‖Pi ≤ αi, the input
constraints are satisfied, i.e. κfi(xi, x̄i, ūi) = ūi +Ki(xi − x̄i) ∈ Ui.
Then, for a such αi and for all xi in

Xf,i(x̄i, αi) =
{
xi ∈ Rni : Vf,i(xi, x̄i) ≤ α2

i

}
.

we get
V̇f,i(xi) = −1

2 ‖xi − x̄i‖Q∗
i
.
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5.B Lemma 5.3

Before we state the proof of Theorem 5.2, we introduce and prove a useful Lemma.

Lemma 5.3. For any two vectors a, b ∈ Rn, a positive semi-definite matrix Q and
a constant β > 0 it holds that

‖a+ b‖2Q ≤ (1 + 2β) ‖a‖2Q + (1 + 1
2β ) ‖b‖2Q . (5.22)

Proof. For any two vectors x, y ∈ Rn, a positive semi-definite matrix Q and β > 0
it holds that

0 ≤ (y − 2βx)TQ(y − 2βx)
0 ≤ yTQy − 2βyTQx− 2βxTQy + 4β2xTQx

4βxTQy ≤ 4β2xTAx+ yTQy

xTQy ≤ βxTQx+ 1
4β y

TQy.

Thus using the obtained inequality we get

‖a+ b‖2Q = (a+ b)TQ(a+ b) = aTQa+ bTQb+ 2aTQb

≤ aTQa+ bTQb+ 2βaTQa+ 1
2β b

TQb

= (1 + 2β)aTQa+ (1 + 1
2β )bTQb

= (1 + 2β) ‖a‖2Q + (1 + 1
2β ) ‖b‖2Q

5.C Proof of Theorem 5.2

Proof. The proof proceeds in two parts. The first part shows the boundedness of
V Ni (xi(t)) for all t ≥ 0, and the second part proves that the value function decreases
for all states in the region of attraction at every time step.

By the definition of the value function

V Ni (xi(t)) ≥ li(x̂i(0|t),ui(0|t), x̄i, ūi) ≥ ‖x̂i(0|t)− x̄i‖2Qi = ‖xi(t)− x̄i‖2Qi
Moreover,

‖xi − x̄i‖2Q ≤ V Ni (xi(t)) ≤ V Ni,max
thus, there exist γ̄ ≥ 1 for which

γ̄‖xi − x̄i‖2Q = V Ni,max
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and
V Ni (xi(t)) ≤ V Ni,max ≤ γ‖xi − x̄i‖2Q

where γ ≥ γ̄ ≥ 1.
In the second part of the proof, let us consider the change of value function when

the rendezvous update rule is applied which results in the steady-state parameters
x̄i, ūi change into x̄+

i , ū
+
i .

The value function at time step t is

V Ni (xi(t)) = Vfi(x̂∗i (N |t), x̄i) +
N−1∑
k=0

li(x̂∗i (k|t),u∗i (k|t), x̄i, ūi) (5.23)

Let the candidate input sequence for the next time step be Ũi(t+ 1), consisting
of the optimal input from the previous step and some appended uNi ∈ Ui i.e.

Ũi(t+ 1) = (ũi(0|t+ 1), ũi(1|t+ 1), ..., ũi(N − 2|t+ 1), ũi(N − 1|t+ 1))
= (u∗i (1|t),u∗i (2|t), ...,u∗i (N − 1|t),uNi ), uNi ∈ Ui

Assume that there are no disturbances, then

xi(t+ 1) = x̃i(0|t+ 1) = fi(xi(t),u∗i (0|t))

and for k = 0, ..., N − 2, the input ũi(k|t + 1) = u∗i (k + 1|t) generate the state
trajectory

x̃i(k|t+ 1) = x̂∗i (k + 1|t), for k = 1, ..., N − 1.

Then,

V Ni (xi(t+ 1)) ≤ Ji(x̃i, ũi,θ+, N, t+ 1)

=
∥∥x̃i(N |t+ 1)− x̄+

i

∥∥2
Pi

+
N−1∑
k=0

∥∥x̃i(k|t+ 1)− x̄+
i

∥∥2
Qi

+
∥∥ũi(k|t+ 1)− ū+

i

∥∥2
Ri

=
∥∥x̃i(N |t+ 1)− x̄+

i

∥∥2
Pi

+
N−2∑
k=0

∥∥x̃i(k|t+ 1)− x̄+
i

∥∥2
Qi

+
∥∥ũi(k|t+ 1)− ū+

i

∥∥2
Ri

+
∥∥x̃i(N − 1|t+ 1)− x̄+

i

∥∥2
Qi

+
∥∥ũi(N − 1|t+ 1)− ū+

i

∥∥2
Ri

=
∥∥x̃i(N |t+ 1)− x̄+

i

∥∥2
Pi

+
N−1∑
k=1

∥∥x̂∗i (k|t)− x̄+
i

∥∥2
Qi

+
∥∥u∗i (k|t)− ū+

i

∥∥2
Ri

+
∥∥x̂∗i (N |t)− x̄+

i

∥∥2
Qi

+
∥∥uNi − ū+

i

∥∥2
Ri
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or in a compact form

V Ni (xi(t+ 1)) ≤ Ji(x̃i, ũi,θ+, N, t+ 1) = Vfi(x̃i(N |t+ 1), x̄+
i )

+
N−1∑
k=1

li(x̂∗i (k|t),u∗i (k|t), x̄+
i , ū

+
i ) + li(x̂∗i (N |t),uNi , x̄+

i , ū
+
i )

Now, let us state the two main ingredients (proofs available in the next sections) for
the convergence proof, for a chosen βi > 0:
Ingredient 1: (proof in 5.C.1)

li(x̂∗i (k|t),u∗i (k|t), x̄+
i , ū

+
i ) ≤(1 + 2βi)li(x̂∗i (k|t),u∗i (k|t), x̄i, ūi)

+ (1 + 1
2βi

)(∆x̄2
Qi + ∆ū2

Ri), k = 1, ..., N − 1

(5.24)

Ingredient 2: (proof in 5.C.2)

Vfi(x̃i(N |t+ 1), x̄+
i ) ≤− li(x̂∗i (N |t),uNi , x̄+

i , ū
+
i ) + (1 + 2βi)Vfi(x̂∗i (N |t), x̄i)

+ (1 + 1
2βi

)∆x̄2
Pi

(5.25)

Using the ingredients 1 and 2 and the equation (5.23) for the optimal cost we have,

V Ni (xi(t+ 1)) ≤ Ji(x̃i, ũi, θ+, t+ 1) = Vfi(x̃i(N |t+ 1), x̄+
i )

+
N−1∑
k=1

li(x̂∗i (k|t),u∗i (k|t), x̄+
i , ū

+
i ) + li(x̂∗i (N |t),uNi , x̄+

i , ū
+
i )

(5.24)
≤ Vfi(x̃i(N |t+ 1), x̄+

i ) + li(x̂∗i (N |t),uNi , x̄+
i , ū

+
i )

+ (N − 1)(1 + 1
2βi

)(∆x̄2
Qi + ∆ū2

Ri)

+ (1 + 2βi)
N−1∑
k=1

li(x̂∗i (k|t),u∗i (k|t), x̄i, ūi)

(5.25)
≤ −li(x̂∗i (N |t),uNi , x̄+

i , ū
+
i ) + (1 + 1

2βi
)∆x̄2

Pi

+ (1 + 2βi)Vfi(x̂∗i (N |t), x̄i)

+ li(x̂∗i (N |t),uNi , x̄+
i , ū

+
i ) + (N − 1)(1 + 1

2βi
)(∆x̄2

Qi + ∆ū2
Ri)

+ (1 + 2βi)
N−1∑
k=1

li(x̂∗i (k|t),u∗i (k|t), x̄i, ūi)
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= (1 + 2βi)Vfi(x̂∗i (N |t), x̄i) + (1 + 2βi)
N−1∑
k=0

li(x̂∗i (k|t),u∗i (k|t), x̄i, ūi)

− (1 + 2βi)li(x̂∗i (0|t),u∗i (0|t), x̄i, ūi)

+ (1 + 1
2βi

)(∆x̄2
Pi + (N − 1)(∆x̄2

Qi + ∆ū2
Ri))

(5.23)= (1 + 2βi)V Ni (xi(t))− (1 + 2βi)li(x̂∗i (0|t),u∗i (0|t), x̄i, ūi)

+ (1 + 1
2βi

)(∆x̄2
Pi + (N − 1)(∆x̄2

Qi + ∆ū2
Ri))

Therefore, we obtain

V Ni (xi(t+ 1))− V Ni (xi(t)) ≤ 2βiV Ni (xi(t))− (1 + 2βi)li(x̂∗i (0|t),u∗i (0|t), x̄i, ūi)

+ (1 + 1
2βi

)(∆x̄2
Pi + (N − 1)(∆x̄2

Qi + ∆ū2
Ri))

We know that

θ(t+ 1) = θ(t)− ηvθ(t),
x̄i = x̄i(t) = Hxiθ(t), x̄+

i = x̄i(t+ 1) = Hxiθ(t+ 1)
ūi = ūi(t) = Huiθ(t), ū+

i = ūi(t+ 1) = Huiθ(t+ 1)

then

∆x̄2
Qi =

∥∥x̄i − x̄+
i

∥∥2
Qi

= ‖Hxiθ(t)−Hxiθ(t) +Hxiηvθ(t)‖
2
Qi

= η2 ‖Hxivθ(t)‖
2
Qi

= η2 ‖vθ(t)‖2HTxiQiHxi

Analogously,

∆ū2
Ri = η2 ‖vθ(t)‖2HTuiRiHui

∆x̄2
Pi = η2 ‖vθ(t)‖2HTxiPiHxi

Then,

∆x̄2
Pi + (N − 1)(∆x̄2

Qi + ∆ū2
Ri) = η2 ‖vθ(t)‖2HTxiPiHxi+(N−1)(HTxiQiHxi+H

T
ui
RiHui )

= η2 ‖vθ(t)‖2Hvi
≤ η2λmax(Hvi) ‖vθ(t)‖

2

= η2λmax(Hvi).
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Where we utilized the facts that vθ(t) is the normalized unit vector and that the
matrix Hvi = HT

xiPiHxi +(N−1)(HT
xiQiHxi +HT

uiRiHui) is a positive semi-definite
matrix, because Pi, Qi, Ri are positive definite matrices.

Finally, for all xi ∈ XROAi it holds:

V Ni (xi(t+ 1))− V Ni (xi(t)) ≤ 2βiV Ni (xi(t))− (1 + 2βi)li(x̂∗i (0|t), u∗i (0|t), x̄i, ūi)

+ (1 + 1
2βi

)(∆x̄2
Pi + (N − 1)∆x̄2

Qi + ∆ū2
Ri)

≤ 2βiV Ni (xi(t))− (1 + 2βi)li(x̂∗i (0|t),u∗i (0|t), x̄i, ūi)

+ (1 + 1
2βi

)η2λmax(Hvi)

≤ −(1 + 2βi)li(x̂∗i (0|t),u∗i (0|t), x̄i, ūi) + 2βiVi,max

+ (1 + 1
2βi

)η2λmax(Hvi)

Then, using the fact that x̂∗i (0|t) = xi(t) and u∗i (0|t) = ui(t) and by choosing
η = mini{η̄i} where

η̄i :=

√√√√ ( 1
2 + 2βi)li(xi(t),ui(t), x̄i, ūi)− 2βiV Ni,max

(1 + 1
2βi )λmax(Hvi)

because there exists βi > 0 such that(
1
2 + 2βi

)
li(xi(t),ui(t), x̄i, ūi)− 2βiVi,max > 0

Hence,
0 < βi < β̄i := li(xi(t),ui(t), x̄i, ūi)

4(Vi,max − li(xi(t),ui(t), x̄i, ūi))
.

The obtained step η as η = mini{η̄i} can be written as η2 + ∆ηi = η̄2
i , where

∆ηi ≥ 0, then

V Ni (xi(t+ 1))− V Ni (xi(t)) ≤ −
1
2 li(xi(t),ui(t), x̄i, ūi)− (1 + 1

2βi
)∆ηiλmax(Hvi)

≤ −1
2 li(xi(t),ui(t), x̄i, ūi)

because (1 + 1
2βi )∆ηiλmax(Hvi) ≥ 0, which completes the proof.

5.C.1 Ingredient 1
For k = 1, ..., N − 1 and a chosen βi > 0 it holds

li(x̂∗i (k|t),u∗i (k|t), x̄+
i , ū

+
i ) ≤(1 + 2βi)li(x̂∗i (k|t),u∗i (k|t), x̄i, ūi)

+ (1 + 1
2βi

)(∆x̄2
Qi + ∆ū2

Ri)
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where

∆x̄Qi =
∥∥x̄i − x̄+

i

∥∥
Qi
, ∆ūRi =

∥∥ūi − ū+
i

∥∥
Ri

Proof.
li(x̂∗i (k|t),u∗i (k|t), x̄+

i , ū
+
i ) =

∥∥x̂∗i (k|t)− x̄+
i

∥∥2
Qi

+
∥∥u∗i (k|t)− ū+

i

∥∥2
Ri

=
∥∥x̂∗i (k|t)− x̄i + x̄i − x̄+

i

∥∥2
Qi

+
∥∥u∗i (k|t)− ūi + ūi − ū+

i

∥∥2
Ri

(5.22)
≤ (1 + 2βi) ‖x̂∗i (k|t)− x̄i‖

2
Qi

+ (1 + 1
2βi

)
∥∥x̄i − x̄+

i

∥∥2
Qi

+ (1 + 2βi) ‖u∗i (k|t)− ūi‖
2
Ri

+ (1 + 1
2βi

)
∥∥ūi − ū+

i

∥∥2
Ri

= (1 + 2βi)li(x̂∗i (k|t),u∗i (k|t), x̄i, ūi) + (1 + 1
2βi

)(∆x̄2
Qi + ∆ū2

Ri)

5.C.2 Ingredient 2

It holds that

Vfi(x̃i(N |t+ 1), x̄+
i ) ≤− li(x̂∗i (N |t),uNi , x̄+

i , ū
+
i ) + (1 + 2βi)Vfi(x̂∗i (N |t), x̄i)

+ (1 + 1
2βi

)∆x̄2
Pi

where

∆x̄Pi =
∥∥x̄i − x̄+

i

∥∥
Pi
.

Proof. Let us use the standard lemma for the terminal sets which states that in a
positive invariant set Xf,i it holds

Vfi(x+
i , x̄

+
i )− Vfi(xi, x̄+

i ) ≤ −li(xi,uk,i, x̄+, ū+)

with some terminal control law uk,i = ū+
i +Ki(xi − x̄+

i ) and Lyapunov function
Vfi around a steady state (x̄+

i , ū
+
i ).

Since x̂i(N, t) = x̃i(N − 1, t + 1) ∈ Xf,i then there exists a terminal law
uNi = uk,i = ū+

i +Ki(x̃i(N − 1, t+ 1)− x̄+
i ) such that x̃i(N, t+ 1) ∈ Xf,i and it

holds

Vfi(x̃i(N |t+ 1), x̄+
i ) ≤ Vfi(x̂∗i (N |t), x̄+

i )− li(x̂∗i (N |t),uNi , x̄+
i , ū

+
i ) (5.26)
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We have

Vfi(x̂∗i (N |t), x̄+
i ) =

∥∥x̂∗i (N |t)− x̄+
i

∥∥2
Pi

=
∥∥x̂∗i (N |t)− x̄i + x̄i − x̄+

i

∥∥2
Pi

(5.22)
≤ (1 + 2βi) ‖x̂∗i (N |t)− x̄i‖

2
Pi

+ (1 + 1
2βi

)
∥∥x̄i − x̄+

i

∥∥2
Pi

= (1 + 2βi)Vfi(x̂∗i (N |t), x̄i) + (1 + 1
2βi

)∆x̄2
Pi

and replacing it in the equation (5.26) we obtain

Vfi(x̃i(N |t+ 1), x̄+
i ) ≤(1 + 2βi)Vfi(x̂∗i (N |t), x̄i) + (1 + 1

2βi
)∆x̄2

Pi

− li(x̂∗i (N |t),uNi , x̄+
i , ū

+
i )





Chapter 6

Leader-follower Rendezvous with
Distributed Predictive Control

In this chapter, we redesign the multi-agent rendezvous problem as the leader-
follower problem with one leader and one or more follower agents for autonomous
landings. The leader in our case is the boat due to the less agile dynamics compared
to the quadrotor that is considered as a follower.

We propose a novel distributed model predictive control (DMPC) based algorithm
with a trajectory predictor for a scenario of landing of UAVs on a moving USV.
The algorithm is executing DMPC with exchange of trajectories between the agents
at a sufficient rate. In the case of loss of communication, and given the sensor
setup, agents are predicting the trajectories of other agents based on the available
measurements and prior information. The predictions are then used as the reference
inputs to DMPC. During the landing, the followers are tasked with avoidance of
USV-dependent obstacles and inter-agent collisions. In the proposed distributed
algorithm, all agents solve their local optimization problem in parallel and we prove
the convergence of the proposed algorithm.

The considered agents in our setup are equipped with sensors, i.e. a camera
on the quadrotor (UAV) side, and a radar on the boat (USV) side, that enable
the accurate position measurement of the neighbouring agents with a frequency
significantly higher than the real-time execution frequency of the MPC. In the case
of loss of communication between the agents, an agent is left only with the data
history and locally available measurements. During challenging maneuvers such
as landing or navigating through a space with moving obstacles, the frequency of
execution of the DMPC relative to the moving speeds of the agents and obstacles
can severely affect the performance and safety. This is especially the case when the
references are based only on the current measurements and not on the committed
trajectories, which indeed occurs in the loss of communication scenario. Note that,
the communication losses we consider can be both temporary and permanent,
because even an occasional package drop for few seconds that can occur during the
hardware-in-the-loop experiments can lead to disastrous outcomes.

89
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The hierarchical approaches presented in the literature [17, 107] deal with the
described problem by separating the control in different layers. Usually, there is
a high-level planning layer and a safety layer, for example with Control Barrier
Functions (CBF) operating on a much higher frequency that is tasked with safety in
the presence of obstacles [108]. Fundamentally, the concept of MPC is to unify these
layers. Both approaches have their advantages and disadvantages and all aspects of
the chosen concept must be taken into account to avoid unwanted behaviors. One
of the ways is to use a prediction scheme to complement the available data. In [60],
the authors propose a vision-based framework with the state estimation for the
ground vehicle considered as a moving target. Estimation-based control protocol
proposed in [61] uses only local observations of the state of the neighboring agents
for rendezvous and flocking control. In another estimation-based protocol, authors
in [62] use particle filter to predict aircraft trajectories. Prediction-based navigation
in a decentralized event-based scheme is studied in [63]. Moreover, learning-based
prediction approaches for multi-agent systems in the recent years became very
popular area of research [64–68]. Unfortunately, most of these approaches require
extensive amount of data for the training purpose and direct transferability to our
particular application is unknown.

In this chapter, we case the multi-agent and heterogeneous (involving UAVs and
USVs) rendezvous problem as a leader-follower network with one leader and one
or more follower agents for autonomous landings. We formulate the problem as a
cooperative distributed model predictive control problem with collision avoidance
constraints. In the case when the predicted trajectory is available to the followers,
and the follower is able to dynamically follow the given reference trajectory, the
landing can be executed using a relatively simple MPC for a single agent follower.
However, a sudden communication loss can severely destabilize the landing leading
to a collision with obstacles on the boat. Based on this observation, we adopt a
prediction scheme in the case of communication loss to enhance the safety and
performance.

Moreover, we generalize the scheme to multiple-follower rendezvous in which the
inter-agent collisions must be handled. There are several challenges in the inter-agent
collision avoidance in this case. First, in the sequential application of the algorithm
each agent is optimizing its control strategy based on the shared trajectories that
other agents have committed to. In this case, each agent must wait until all other
agents have shared their new trajectories to begin the computation of its next
control input. Otherwise, using the old shared trajectories without additional safety
measures can lead to a collision. Second, in the parallel version the agents operate
with the most recent available shared trajectories and account for the worst-case
deviations as a safety measure. However, this can be very conservative and lead to
deadlock. Third, if one or more agents lose the communication for some duration
safety can be compromised. This, in some sense, resembles a non-cooperative scenario
and we propose appropriate safety measures.

The contributions of this chapter are
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• a rendezvous algorithm based on leader-follower DMPC formulation for au-
tonomous landing in presence of obstacles

• a convergence proof for a probabilistic safe landing in the case of communication
loss

• an inter-agent collision avoidance robust to communication losses

The chapter is organized as follows. We first present the cooperative distributed
leader-follower MPC formulation and define the safety constraints. Then, we elabo-
rate the prediction scheme and the proposed rendezvous algorithm. Furthermore,
we present the convergence analysis and the simulation results.

Notation
We denote the discrete time step with t and set of agents with N := {l, f1, ..., fM}.
The state trajectories are denoted with xi(t), the predicted nominal state trajectories
with x̂i(k|t) and optimal state trajectories with x̂∗i (k|t) for an agent i at time step
k + t predicted at time step t. The collection of trajectories from time step t until
t + N is denoted with xi(·|t); Br := {a : ‖a‖ ≤ r} is a ball of radius r; ⊕ is
Minkowski sum addition defined as x⊕S := {x+a : a ∈ S}. For an element i ∈ N ,
we denote a set excluding the element i with N−i := N \ {i}.

6.1 Problem Formulation

Consider a multi-agent system consisting of one leader and M follower agents that
are dynamically decoupled and behaving according to the nonlinear discrete time
dynamics

xi(t+ 1) = fi(xi(t),ui(t)) +wi(t), (6.1)
where i ∈ N = {l, f1, ..., fM}, l denotes the leader, f1, ..., fM denote the followers,
M is the number of follower agents, xi ∈ Xi ⊆ Rni , ui ∈ Ui ⊆ Rmi denote the state
and input of an agent i that are subject to the state and input constraints Xi and Ui,
respectively, and wi ∈ Wi ⊂ Rni is unknown but bounded disturbance in a compact
set Wi.

The follower agents have the same dynamics and state space of a quadrotor
UAV as in (2.23) with the approximation of the attitude dynamics as introduced
in Subsection 5.4.1. The dynamics and the state space of the follower agents are
different from the leader ones modeled as an underactuated 3DoF boat USV model
introduced in Subsection 2.3.2. We assume that the landing platform is rigidly
attached to the boat USV and neglect the heave (vertical motion), roll and pitch
motion. Furthermore, the first three elements of state vectors of all agents denote
the position pi ∈ R3.

The overall multi-agent system dynamics in stack-vector form are

x(t+ 1) = f(x(t),u(t)) +w(t), (6.2)
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where x = [xTl ,xTf1
, ...,xTfM ]T , u = [uTl ,uTf1

, ...,uTfM ]T , w = [wT
l ,w

T
f1
, ...,wT

fM
]T .

The state and input constraints of the overall system are x ∈ X := Xl×Xf1×...×XfM ,
and u ∈ U := Ul × Uf1 × ... × UfM , the set of all disturbances is w ∈ W :=
Wl ×Wf1 × ...×WfM .

We formulate the inter-agent collision avoidance constraints as

hij(xi(t),xj(t)) ≥ 0, ∀i, j ∈ N , i 6= j, (6.3)

where hij : Xi × Xj → R is a function that encodes collisions and will be defined
later. Given a solution x(t) of the system (6.2), if the constraint functions (6.3) are
satisfied for all t ≥ t0 then x(t) is a collision-free solution, i.e. x(t) ∈ F ⊆ X , where
F denotes the collision-free space.

This chapter considers the problem of navigating the leader agent to follow a
given reference and follower agents to a rendezvous position with respect to the leader
while avoiding inter-agent collisions. In general this corresponds to Problem 1.2,
but here it is stated in a more detailed manner. We denote the leader reference
xr,l(t) = xr(t) and references of the followers xr,i(xl(t), ci) := [(pl(t)+ci)T ,0Tni−3]T
with respect to the position pl(t) of the leader xl and a given offset ci ∈ R3 encoding
the particular landing position of an i-th agent, i ∈ N−l. With a slight abuse of
notation, the problem treated in the chapter can be stated as follows.

Problem 6.1. Consider a multi-agent system (6.1). Design a control policy u such
that

x(t) ∈ F , t ≥ t0
lim
t→∞

(xl(t),ul(t)) = (xr(t),0nl)

lim
t→∞

(xi(t),ui(t)) = (xr,i(xl(t), ci),0ni), ∀i ∈ N−l

Moreover, we assume that agents are able to communicate and share their
current and predicted positions ẑi(·|t) asynchronously. Because the follower agents
have different dynamics from the leader, and different state vectors, we define the
following mapping from the leader state space Xl to the follower state space Xi,
i ∈ N−l

ẑl(t) = Hx̂l(t), (6.4)
where H = diag(I3, 0(ni−3)×(nl−3)). This mapping effectively maps only the position
of the leader to the follower state space. For the follower agents it holds ẑi(t) = x̂i(t),
i ∈ N−l.

When the communication is without losses, all follower agents have access to
ẑi(·|t− 1) for all i ∈ N , where all data arrived between time steps t− 1 and t is cast
as data from time step t− 1. However, we want that the designed control policy u is
able to achieve the goal stated in Problem 6.1 even in the case of communication loss.
In the context of this chapter, the communication loss is considered as an inability
of an agent to retrieve the latest shared data from another agent. More formally,
the communication loss is an inability of an agent i at time step t to retrieve the
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shared data ẑj(·|t − k) from another agent j generated at time step t − k, where
k ≥ 1. Thus, we will impose stronger assumptions on the behaviour of the followers
that will be stated in Sections 6.6 and 6.7.

6.2 Distributed MPC Formulation

We choose to address Problem 6.1 using distributed MPC where each agent solves
a distributed optimal control problem for a planning horizon of N time steps and
applies the first control input during the control horizon ∆t [50]. Note that all time
steps in the control architecture are discrete t ∈ N0 and ∆t denotes the continuous
time duration between two time steps. The procedure is then repeated at every time
step for each agent.

Let x̂i(k|t) be the nominal state trajectory at time k+t, k = 0, 1, ..., N calculated
at time instant t, where x̂i(0|t) = xi(t), governed by the following difference equation

x̂i(k + 1|t) = fi(x̂i(k|t),ui(k|t)) (6.5)

Each agent is provided with the state reference trajectory at time step t until t+N
which is given as xr,i(·|t) = {xr,i(0|t), ...,xr,i(N |t)}. The references are provided by
the proposed algorithm which will be elaborated in Sections 6.7 and 6.6. The control
objective of each agent at time step t is to minimize the following cost function

Ji(x̂i(·|t),ui(·|t),xr,i(·|t), N, t) =
N∑
k=0
‖x̂i(k|t)− xr,i(k|t)‖2Qi (6.6)

while respecting the constraints, where the summand represents the stage cost and
Qi is a positive-definite weighting matrix. We denote also J =

∑
i∈N Ji.

We formulate the distributed optimal control problem with respect to the
objective.

Problem 6.2. Let the states of the agents at time t be xi(t), i ∈ N . Given the
references xr,i(·|t) and the predicted trajectories of other agents ẑj(·|t), j ∈ N−i,
the distributed optimal control problem is formulated as

min
ui(·|t)

Ji(x̂i(·|t),ui(·|t),xr,i(·|t), N, t) (6.7a)

subject to

x̂i(k + 1|t) = fi(x̂i(k|t),ui(k|t)), (6.7b)
x̂i(k|t) ∈ Xi, (6.7c)
ui(k|t) ∈ Ui, (6.7d)
x̂i(k|t) ∈ Xi,j(ẑj(k|t)), for i ∈ N−l, j ∈ N−i, (6.7e)

for k = 0, 1, ..., N , for all i ∈ N .
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Figure 6.1: Restricted area and side view of the constraint hC from (6.8)

Set Xi denotes the set of model state constraints and Ui the input constraints.
Xi,j(ẑj(k|t)) is the set of spatiotemporal safety constraints with respect to the other
agents that will be formulated in the next section. Note that the leader is not
subjected to the inter-agent collision constraints (6.7e), but only the follower agents.

6.3 Spatiotemporal Safety Constraints

The desired specification on UAV movements in the 3D space are to fly above some
prescribed height and avoid obstacles. However, in the problem of UAV landing on a
boat, we are particularly interested in the obstacles that arise from the boat shape,
equipment and its movement. These specific obstacles surrounding the landing area
on the boat are depicted in Figure 6.1.

This area can be modeled as two convex areas with a binary variable that
depends on the altitude of the UAV and determines which of the two constraints
should be enforced within the mixed-integer optimization problem [42]. However,
it is of interest to model the restricted flying area with one nonlinear continuous
function such that the usage of mixed-integer programming is avoided due to the
computational burden it can cause.

In the following considerations, we assume the landing platform is circular with
the radius r, rsafe < r is the safety radius needed for safe landing and hs is the
safety height below which the UAV is not allowed to descent unless above the
landing platform. Let zl = [pxc , pyc , 0Tnf−2]T ∈ Xf be the center of the boat landing
platform and xf = [px, py, pz, 0Tnf−3]T ∈ Xf be the position of the UAV.

We define the constraint function hC in a novel way as

hC(xf , zl) := pz −
hs

1 + e−β((px−pxc )2+(py−pyc )2−r2) ≥ 0 (6.8)

where β > 0 is a tuning parameter that determines the slope of the funnel.
Requiring that hC(xf , zl) ≥ 0, the UAV will always be above the boat position-

dependent constraint function. The boundary of the restricted area defined with hC
in 3D is visible on Fig. 6.2.

The spatiotemporal constraint imposed on the position of the follower x̂i(k|t),
i ∈ N−l at time step t+ k, predicted at time t, for i = 0, 1, ..., N , with respect to
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Figure 6.2: hC from (6.8), for hs = 2, r = 2.5, β = 1

the future trajectory of the leader position ẑl(k|t) is

hC(x̂i(k|t), ẑl(k|t)) ≥ 0 for all k = 0, ..., N. (6.9)

Therefore, we define the safe set Xi,l(ẑl(k|t)) in (6.7e) for all i ∈ N−l as

Xi,l(ẑl(k|t)) := {x̂i(k|t) : hC(x̂i(k|t), ẑl(k|t)) ≥ 0} . (6.10)

Note that in the current formulation we assume that the height of the landing
platform is zero.

6.4 Inter-agent Collision Avoidance

The previous section defines the safety constraint function that each follower enforces
in its optimization problem with respect to the leader. The inter-agent collision
avoidance condition is formulated on a set of follower agents M = N−l as

‖C(x̂i(k|t)− ẑj(k|t))‖ ≥ R, for j ∈M−i (6.11)

for k = 0, 1, ..., N , where R > 0 is the minimal distance between the follower agents.
The matrix C = diag(1, 1, c,0ni−3), with c > 1, determines the shape of the super
ellipsoidal set constraint such that it prevents the collision and the downwash effect
that can occur if a UAV ends up below another.

Moreover, the condition (6.11) can be stated in form (6.3) as

hij(x̂i(k|t), ẑj(k|t)) := ‖C(x̂i(k|t)− ẑj(k|t))‖ −R ≥ 0

and the safe set Xi,j(ẑj(k|t)) in (6.7e) for all i ∈M and j ∈M−i is defined as

Xi,j(ẑj(k|t)) := {x̂i(k|t) : hij(x̂i(k|t), ẑj(k|t)) ≥ 0} .
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6.5 EKF Predictor

In order to handle the communication losses, we equip the agents with an Extended
Kalman Filter (EKF) as an N -step predictor of the future trajectory of the other
agents. There is a significant portion of literature considering the trajectory prediction
of the other agents in the multi-agent system [60–63]. From Extended Kalman Filter,
Particle filter to predicting human-like behaviour using machine learning, that can
be based on cooperative or even adversarial behaviour of the other agent [64–68].

EKF Predictor is formulated for a general nonlinear system x+ = f(x) with
linearized dynamics around a measured state and unknown input. The N -step
prediction is done by repeating the prediction step N times in open loop. The
outputs of the EKF Predictor used in the control architecture are the predicted
trajectories ẑp,i(·|t) and the prediction covariance matrices Pp,i(·|t). The prediction
covariance matrix Pp,i(k|t) provides us with the estimate of a super ellipsoidal set
determined by its eigenvalues λk(Pp,i).

The tracked agent is considered to have Newtonian dynamics of second order,
thus the predictor with slight modifications can be used to track other follower
agents such as quadrotors. EKF Predictor is given as Alg. 2 and formulated for a
general system x+ = f(x) with linearized dynamics around a measured state

A(t− 1) := ∂f(xm(t− 1))
∂x

(6.12)

with measurement matrix H(t), which is different than fixed H matrix used in the
previous sections to map the leader states to the follower state space for rendezvous.

EKF Predictor will be used to predict the movements of other agents in the
scheme, if their shared trajectories become unavailable, due to an eventual loss of
communication. Note that EKF Predictor is not using the control input as it is
unknown to the agent predicting the future trajectory. Therefore, the covariance
matrix Pp(k|t) provide us with the estimated super ellipsoidal set that will be used
for the inter-agent collision as well.

6.6 Rendezvous Algorithm

The multi-agent formulation in which we have multiple followers is challenging
due the possible inter-agent collisions even in the case when all agents share their
committed trajectories. In this section, we formulate the algorithm for multiple-
follower rendezvous landing.

We assume that the landing platform is large enough to accommodate M agents
that can land simultaneously at prespecified positions ci ∈ Br−rsafe relative to the
center of the landing platform. Moreover, due to the application testbed in hand
[109], we will constrain the scheme to M agents, and additional follower agents can
be included if a prioritization procedure is included in the proposed algorithm. We
state the following assumption on the initial conditions and feasibility that will be
used to analyze the algorithm convergence.
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Algorithm 2 EKF Predictor
Require: prediction horizon N ; model and covariance matrices A(t), Q(t),R(t), H(t)

for all t ≥ 0, covariance matrices Pm(0), Pp(0);
1: function predict
2: x̂p(t) = f(x̂m(t− 1))
3: Pp(t) = A(t− 1)Pm(t− 1)AT (t− 1) +Q(t− 1)
4: return x̂p(t), Pp(t)
5: function update(z(t))
6: K(t) = Pp(t)HT (t)(H(t)Pp(t)HT (t) +R(t))−1

7: x̂m(t) = x̂p(t) +K(t)(z(t)−H(t)x̂p(t))
8: Pm(t) = (I −K(t)H(t))Pp(t)
9: return x̂m(t), Pm(t)

10: function predict trajectory(N)
11: x̂p(k|t) = x̂m(t)
12: Pp(k|t) = Pm(t)
13: for k = 0 to N do
14: x̂p(k + 1|t) = f(x̂p(k|t))
15: Pp(k + 1|t) = A(k|t)Pp(k|t)AT (k|t) +Q(k|t)
16: return x̂p(·|t), Pp(·|t)
17: while not landed do
18: if new measurement z(t) received then
19: x̂p(t), Pp(t)← predict() . prediction step
20: x̂m(t), Pm(t)← update(z(t)) . update measurement step
21: x̂p(·|t), Pp(·|t)← predict trajectory(N) . trajectory prediction

Assumption 6.1. All agents at time t0 have initial conditions xi(t0), i ∈ N such
that

xi(t0) ∈ Xi,j(zj(t0)) for i 6= l, j ∈ N−i.

Moreover, it holds that

‖ci − cj‖ > R, for all i, j ∈M, i 6= j.

Before we state the algorithm, let us introduce a data collection Di(t) that is
available to an agent i at time step t as Di(t) = {ẑj(·|tj)}j∈N−i consisting of the
shared future trajectories of all other agents broadcast at time tj < t,∀j ∈ N−i.

Remark 6.1. An issue that can occur in the multi-agent case with inter-agent
collision avoidance in general, is that the agents can end up in a deadlock and be
prevented to effectively find a way to navigate to the goal position. In that case, the
deadlock can be resolved by forcing the agents to solve Problem 6.2 sequentially
[47, 103]. This would guarantee that each agent takes into account the current
predicted trajectory of other agents and waits until the process is completed. Thus,
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Algorithm 3 Multiple-Follower Rendezvous Algorithm
Require: initial states xi(0) at time t = 0, landing locations ci according to

Assumption 6.1 for i ∈M, a tolerance parameter ε;
1: for each agent i ∈M do
2: update Di(t) and ẑj(·|t), j ∈ N−i using (6.14)
3: x̂∗i (·|t), û∗i (·|t)← solve Problem 6.2
4: if ‖x̂i(t)− ẑl(t) + ci‖ > ε then
5: apply û∗i (0|t)
6: broadcast x̂∗i (·|t)
7: t← t+ 1

the generated trajectories will not end up in a deadlock. Note that communication
in this case is required. Therefore, Algorithm 3 requires that the first iteration
of the algorithm is done in a sequential manner and that the initial feasibility is
established.

6.7 Convergence Analysis

Let us consider the one-follower case of the rendezvous landing problem, N = {l, f},
in which the leader reference xr,l(t) is given, and the follower reference is based
on the position of the leader xr,f (t) = zl(t) that corresponds to the center of the
landing platform. In order to analyze system behavior, we introduce an assumption
on the follower’s capability to track the leader with respect to the leader dynamics
and spatiotemporal constraints.

Assumption 6.2. There exists a control law κ : Xf ×Xf → Uf such that

‖x+
f − z

+
l ‖

2 ≤ ρ‖xf − zl‖2 (6.13)

with ρ ∈ (0, 1) and

x+
f = ff (xf , κ(xf , zl))
x+
l = fl(xl,ul),
zl = Hxl,

hC(xf , zl) ≥ 0

for all xf ∈ Xf ,xl ∈ Xl, and ul ∈ Ul.

Assumption 6.2 states that for any control action the leader takes, there exists
a control law for the follower that will reduce the distance between them in every
consecutive time step. However, in the case of communication losses, the follower
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must be capable to asymptotically reduce the distance regardless of the leader’s
behaviour.

Furthermore, Assumption 6.2 is similar to Assumptions 4 and 6 in [110] from
which the notion of incremental stability as in [111, Def. 2.1],[112] can be elaborated.
Compared to [110], the reference zl in our case has different dynamics than the
followers’ and it does not take into account the control action of the leader.

Referring to Problem 6.2, let the value function at time step t be

VN (xf (t), zl(t)) = min
uf (·|t)

Jf (x̂f (·|t),uf (·|t), ẑl(·|t), N, t)

=
N−1∑
k=0

∥∥x̂∗f (k|t)− ẑl(k|t)
∥∥2
Qf

We define the region of attraction XROAf (zl) := {xf ∈ Xf : VN (xf , zl) ≤ VN,max}
of the MPC controller as the set of states which can be steered to the desired leader
state zl in N or fewer steps.

The convergence result for the case of one follower is based on ensuring that
for all initial states in the region of attraction, the value function is a Lyapunov
function decreasing at each time step.

Theorem 6.1 (Convergence with one follower). Let Assumption 6.2 hold. For any
VN,max ∈ R>0, there exist constants γ ≥ 1, and N0 ∈ N, such that for all N > N0
and all initial conditions in the region of attraction xf (0) ∈ XROAf (zl(0)), there
exists αN ∈ R>0 such that the multi-agent system (6.1), with wi = 0, i ∈ N = {l, f}
satisfies

‖xf − zl‖2Qf ≤ VN (xf , zl) ≤ γ‖xf − zl‖2Qf ,

VN (x+
f , z

+
l )− VN (xf , zl) ≤ −αN‖xf − zl‖2Qf ,

for all t ≥ 0. Furthermore, for all xf (0) ∈ XROAf (zl(0)) the follower converges to
the leader-dependent rendezvous location exponentially, i.e. xf (t)→ zl(t) as t→∞.

The proof is given in Appendix 6.A.

Remark 6.2. Note that the optimization problem in Problem 6.2 does not use the
terminal ingredients and thus they are not used in Theorem 6.1, although it is a
common way to prove the stability of MPC scheme [51, 78]. In this chapter, we
avoid usage of the terminal ingredients by considering a sufficiently long planning
horizon N in the region of attraction XROA. This builds upon the methodology
suggested in [110, 113]. Moreover, the initial feasibility in the region of attraction
is implicitly assumed in Theorem 6.1 by the same principle, i.e. by assuming that
there exists N0 for which the optimization problem in Prob. 6.2 is feasible for all
initial conditions in XROA. Also note that the disturbances are not considered in
the theorem.
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It is straightforward to show, using the same argument as in Theorem 6.1,
that the leader agent will follow its reference trajectory as well, thus achieving the
objective of Problem 6.1.

6.7.1 Robustness to Communication Losses
In case of communication loss, the latest available shared trajectory of the leader
used as the follower reference is shifted and the missing part of the trajectory is
predicted with the EKF predictor. If the latest time of arrival ta of the shared
trajectory is ta < t− k, 0 < k < N , then the trajectory is shifted for k time steps
and the rest is predicted as follows

ẑi(l|t) =
{
ẑi(l + k|ta,i), for l < N − k
ẑp,i(l + k|ta,i), for l ≥ N − k

(6.14)

for l = 0, 1, ..., N . However, the predicted trajectory has some uncertainty such that
zi(l|t) ∈ ẑp,i(l|ti)⊕Pi(l|t) where the set Pi(l|t) := {b : ‖b‖2Pp,i(l|t) ≤ s} is determined
by the prediction covariance matrix Pp,i(l|t) and a parameter s = −2 ln(1− p), that
depends on the chosen probability confidence p ∈ (0, 1). In case k = N − 1 which
means that no predicted future steps are available, the data collection is updated
only with the EKF Predictor.

Remark 6.3. Note that the next state uncertainty can be estimated without using
EKF Predictor as zi(l+ 1|t) ∈ ẑi(l|ti)⊕Bri where the choice of the safety radius ri
determines the conservativeness of the used set estimates. By setting ri to

ri = max
xi∈Xi,ui∈Ui

‖x+
i − f(xi,ui)‖ (6.15)

one can guarantee that the next state is within the ball of the given radius. However,
this is an overly conservative approach given that the uncertainty sets grow and
can become very large at the end of the horizon thus preventing the follower agents
to land. In that case, the collision checking can be restricted only for the one-step
ahead prediction, i.e.

‖C(x̂i(1|t)− ẑj(1|t))‖ ≥ R+ rj , for j ∈ N−i

and use the worst case radius rj as in (6.15).

Theorem 6.2 (p-probabilistically safe landing). Let the conditions of Theorem 6.1
hold. Given the probabilistic confidence p ∈ (0, 1), the radius of the landing platform
r, and the radius necessary for the safe landing rsafe, if the following condition
holds

rsafe +
√
sλmax(Pp,i(t)) < r

where s = −2 ln(1− p), then the landing is considered as probabilistically safe with
probability p.
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Proof. The proof is based on the worst-case estimate of the landing position.
Given the probabilistic confidence p and the covariance matrix Pp,i(t), the worst-
case distance from the actual landing position zl(t) and its estimate ẑl(t) is
d =

√
sλmax(Pp,i(t)). Thus, ‖zl(t) − ẑl(t)‖ = d < r − rsafe which means that

the follower applying the control input obtained with Prob. 6.2 is guaranteed to
land inside of the landing platform with probability p.

The extension to the multiple-follower case is given by the following result:

Corollary 6.1. Let Assumption 6.2 and 6.1 hold. Moreover, let the conditions of
Theorem 6.2 hold for all follower agents i ∈M. Then, Algorithm 3 converges and
all follower agents meet on the leader landing platform without a collision.

Proof. The proof is based on two parts. First, that the all agents converge to the
landing platform and second, that their trajectories are collision-free. Given that all
stated conditions hold there exists a feasible configuration for all follower agents to
rendezvous on the leader landing platform. Moreover, all follower agents also satisfy
the conditions from Theorem 6.2, and thus there exist a feasible landing trajectory
robust to communication losses. Because each agent is solving the optimization
problem in Problem 6.2, the inter-agent collision avoidance is enforced in every
feasible landing trajectory. Therefore, all agents rendezvous on the leader landing
platform without a collision.

6.8 Simulation Results

In this section we present a landing scenario with M = 6 agents. The leader is unable
to communicate with the follower agents and thus follower agents must use EKF
Predictor to estimate the position of the leader. Moreover, the leader measurements
are taken from real-world experiments and thus have disturbances. The follower
agents share their predicted trajectories until time step k = 10 (continuous time
tc = 2s) when one of the agents (Agent f1) also loses the communication with the
rest of the agents. Then the rest of the agents in the scenario must also predict
the future trajectory of Agent f1 and Agent f1 predicts the trajectories of all other
agents in the scenario.

The state and input constraints on the models are defined similarly to 5.4.1. The
initial positions of follower agents are xi(0) = [5 cos(2iπ/M), 5 sin(2iπ/M), 10,0T6 ]T ,
and the leader is at origin xl(0) = 06. The radius of the whole landing platform for all
agents is 5rsafe, and the safe radius for landing is rsafe = 0.5m. The matrices Qfi =
diag(10, 10, 5, 1, 1, 1, 1, 1, 1), Ql = diag(10, 10, 10, 1, 1, 1), thus primary penalizing
the position in x and y and then in z for quadrotors, and orientation ψ for the boat.
λmax(Qfi) = 10, and we pick VN,max = 240 such that γ̄ = 1.99 and N = 20, and
the region of attraction is large enough and encompass the initial displacement with
a sufficient margin.

The landing locations are equidistantly distributed as on Fig. 6.3 and assigned
to an agent positioned at the opposite side diagonally. Assumption 6.1 is satisfied
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Figure 6.3: The red circle marks the boundary of the landing platform, while the
blue circles are the landing locations with safety radius rsafe = 0.5m. The distance
from the center of the platform to a landing location is 3rsafe.
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Figure 6.4: 3D view of a landing scenario at discrete time steps t = {0, 5, 10, 13, 17, 23}
with ∆t = 0.2s between two time steps. The followers are unable to communicate with
the leader and a loss of communication with Agent f1 occurs during the experiment
at t = 10. Agent f1 is marked in orange.

with R = 2rsafe, and C = I3. The landing is considered safe if the conditions of
Theorem 6.2 hold with p = 0.95. Assuming that all agents will have the identical
estimation of the landing platform position and inter-agent collisions are handled
it is sufficient to consider the safety with respect to the outer boundary. Thus,
with p = 0.95, λmax(Pp,l(t)) < (5rsafe − 3rsafe)2/s ≈ 0.17. From the experimental
results, λmax(Pp,l(t)) < 0.06 thus satisfying Theorem 6.2. Algorithm 3 and Prob. 6.2
are implemented with CasADi [114] and results are shown on Figures 6.4 and 6.5.
All trajectories are collision-free, and the predicted trajectory of Agent f1 by other
agents and vice versa do not induce much conservativeness to Algorithm. This is
mainly because the first part of the trajectory is generated using the shift mechanism
as in (6.14) and the small eigenvalues of the covariance matrices compared to the
considered safety radii.
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Figure 6.5: Left: Top view of the second situation at t = 5, when it might look from
the perspective view that the agents are too close, shows that the inter-agent collision
avoidance constraint is enforced. Right: Final situation at t = 23. hC is removed for
better visibility.

6.9 Conclusion

In this chapter, we presented a rendezvous algorithm based on the leader-follower
scheme and distributed MPC with robustness to communication losses. The al-
gorithm is designed for autonomous landing of multiple quadrotors on moving
unmanned surface vehicles. We introduced a novel formulation of the safety con-
straints for the autonomous landing scenario and proved the convergence theorem
under nominal conditions without the need for terminal ingredients. Moreover, the
scheme is complemented with EKF Predictor that can enable the landing on the
leader landing platform even in the case when there is no communication between
the leader and follower.

The convergence analysis of the algorithm is presented and the effectiveness of
the proposed algorithm is demonstrated with the simulation of a landing scenario. In
the future work, we aim to include the disturbances in the analysis and quantify the
upper bounds such that the convergence is preserved. Moreover, it will be interesting
to include learning methods in order to speed-up the computation.
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6.A Proof of Theorem 6.1

Proof. The proof proceeds in two parts. The first part shows the boundedness of
VN (xf (t), zl(t)) for all t ≥ 0, and the second part proves that the value function
decreases for all states in the region of attraction at every time step.

By the definition of the value function

VN (xf (t), zl(t)) ≥ ‖x̂f (0|t)− ẑl(0|t)‖2Qf = ‖xf (t)− zl(t)‖2Qf

Moreover, for xf (t) ∈ XROAf (zl)

‖xf (t)− zl(t)‖2Qf ≤ VN (xf (t), zl(t)) ≤ VN,max

thus, there exists γ̄ ≥ 1 for which γ̄ ‖xf (t)− zl(t)‖2Qf = VN,max and γ ≥ γ̄ ≥ 1 such
that

VN (xf (t), zl(t)) ≤ VN,max ≤ γ‖xf (t)− zl(t)‖2Qf
The second part of the proof uses the contraction of the error from Assumption 6.2.

Let a feasible (suboptimal) input sequence for the next time step be ũf (·|t + 1),
defined as

ũf (k|t+ 1) =
{
u∗f (k + 1|t) for k = 0, 1, ..., N − 1
κ(x̂∗f (N |t), ẑl(N |t)) for k = N

consisting of the shifted optimal input from the previous step and some appended
uNf = κ(x̂∗f (N |t), ẑl(N |t)) ∈ Uf that satisfies Assumption 6.2. Assuming there are
no disturbances, then xf (t+ 1) = x̃f (0|t+ 1) = ff (xf (t),u∗f (0|t)) and

x̃f (k|t+ 1) =
{
x̂∗f (k + 1|t) for k = 0, 1, ..., N − 1
ff (x̂∗f (N |t), κ(x̂∗f (N |t), ẑl(N |t))) for k = N

Moreover, due to Assumption 6.2

‖x̃f (N |t+ 1)− ẑl(N |t+ 1)‖2 ≤ ρ
∥∥x̂∗f (N |t)− ẑl(N |t)

∥∥2

and

‖x̃f (N |t+ 1)− ẑl(N |t+ 1)‖2Qf ≤ ρ
λmax(Qf )
λmin(Qf )

∥∥x̂∗f (N |t)− ẑl(N |t)
∥∥2
Qf

Because VN (xf (t), zl(t)) ≤ γ‖xf (t) − zl(t)‖2Qf , then ∀ k ≥ 1, there exist N > 1
and γ ≥ γ̄ ≥ 1 such that

‖x̂∗f (k|t)− ẑl(k|t)‖2Qf ≤
VN (xf (t), zl(t))

N
≤ γ

N
‖xf (t)− zl(t)‖2Qf
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Let us consider the the value function at time step t+ 1, then

VN (xf (t+ 1), zl(t+ 1))

≤
N∑
k=0
‖x̃f (k|t+ 1)− ẑl(k|t+ 1)‖2Qf

=
N−1∑
k=0
‖x̃f (k|t+ 1)− ẑl(k|t+ 1)‖2Qf + ‖x̃f (N |t+ 1)− ẑl(N |t+ 1)‖2Qf

=
N∑
k=1

∥∥x̂∗f (k|t)− ẑl(k|t)
∥∥2
Qf

+ ‖x̃f (N |t+ 1)− ẑl(N |t+ 1)‖2Qf

=
N∑
k=0

∥∥x̂∗f (k|t)− ẑl(k|t)
∥∥2
Qf
−
∥∥x̂∗f (0|t)− ẑl(0|t)

∥∥2
Qf

+ ‖x̃f (N |t+ 1)− ẑl(N |t+ 1)‖2Qf
= VN (xf (t), zl(t))− ‖xf (t)− zl(t)‖2Qf + ‖x̃f (N |t+ 1)− ẑl(N |t+ 1)‖2Qf

≤ VN (xf (t), zl(t))− ‖xf (t)− zl(t)‖2Qf + ρ
γ

N

λmax(Qf )
λmin(Qf ) ‖xf (t)− zl(t)‖2Qf

≤ VN (xf (t), zl(t))− αN ‖xf (t)− zl(t)‖2Qf

where αN := 1 − ρ γN
λmax(Qf )
λmin(Qf ) . Thus by choosing N > N0 := γ̄

λmax(Qf )
λmin(Qf ) , αN > 0.

Finally, the value function VN (xf (t), zl(t)) is decreasing for all t ≥ 0.
Using the decrease property and the boundedness in the region of attraction

XROAf (zl) proven in the first part, VN (xf (t), zl(t)) is a Lyapunov function in
XROAf (zl). Thus, the error ‖xf (t)− zl(t)‖ exponentially goes to zero, which con-
cludes the proof.





Chapter 7

Summary and Future Research Directions

In the thesis, we have investigated trajectory tracking and prediction-based ren-
dezvous for the unmanned aerial and surface vehicles. In particular we have focused
on the topics of prescribed performance control, model predictive control and
distributed control.

In Chapter 3 we have shown an effective way to use prescribed performance
control for an underactuated dynamical system such as the UAV. We provided
the theoretical guarantees for the trajectory tracking with PPC and numerical
simulations.

PPC is also applied to USV, another underactuated system of interest for this
thesis, in Chapter 4 as a part of framework called Kinodynamic motion-planning
via funnel control (KDF). Moreover, we investigated the control input saturations
that can occur due to the physical limitations of the systems. We have proven
that the stability is preserved under certain conditions. Furthermore, the control
framework is applied and tested in the real-world open-sea experiments. After
analyzing the experimental results, we proposed an enhanced trajectory planning
algorithm based on RRT and B-splines that generate smooth trajectories with
respect to the kinodynamic constraints. The enhanced framework is tested in the
simulations and its advantages over KDF are verified.

The second part of the thesis is devoted to the prediction-based rendezvous
algorithm with focus on a specific application of autonomous landing. In Chapter 5
we focus on an event-triggered distributed MPC algorithm with minimal shared
data consisting only of the rendezvous position. The recursive feasibility of the
algorithm is shown using the moving terminal sets. The numerical simulations show
that the agents are able to rendezvous and execute the landing. We noticed that
the performance of the algorithm is better when the terminal sets are not enforced
in the optimization problem. Thus, we posed the optimization problem without
enforcing the terminal sets and proved the convergence of the algorithm.

The leader-follower scheme is investigated in Chapter 6. This approach is chosen
due to the specific spatiotemporal constraints that the boat (the leader) is imposing
on the quadrotor movement (the follower). We proposed a novel formulation of the
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constraints and proved the convergence of followers to the landing platform on the
boat, when the boat is following its own predefined trajectory. Since during the
experiments we noticed that communication losses can occasionally happen, we
equipped the follower agents with EKF Predictor to predict the future trajectories
of all other agents in the scenario. This case is examined in the simulations using
the real data from the boat. Moreover, the inter-agent collision avoidance condition
is added to the optimization problem and we examined how the communication loss
can affect the feasibility of the algorithm. Thus, the proposed algorithm has safety
measures to handle those cases.

7.1 Possible Future Directions

In the first two chapters we focused on PPC for specific underactuated systems. In
this cases we leveraged the known dynamics but considered that all parameters are
unkown. However, it might be of interest to design a general control framework for
general underactuated systems with PPC.

When it comes to the trajectory generation with respect to the kinodynamical
constraints that is covered in Section 4.8, formulating the optimization problem 4.1
in a receding horizon fashion with shorter planning horizon might be interesting and
relevant. The collision avoidance criteria used in this problem are linear compared
to the second-order constraints used in Section 6.4 for the inter-agent collision
avoidance in our multiple-follower formulation of DMPC. Moreover, this approach
that does not require the usage of dynamics but only kinodynamical limitations of
an agent can potentially generate the trajectories at a faster rate than the nonlinear
MPC used in our optimization problems in the second part of the thesis. Then, a
low-level controller such as PPC can be used to guarantee that an agent will remain
in some neighborhood of the reference trajectory.

In Chapter 6, the trajectory predictor can be potentially improved using machine
learning or conformal prediction methods. The learning methods can eventually be
used to learn disturbances or even the behaviour of the agent with MPC in order
to speed-up the computation. Moreover, the resolution of potentially unwanted
behaviours such as deadlocks that occur in the parallel execution of the proposed
algorithm can be of interest to further investigate.

On a more general level, a possible future direction can include using Signal-
temporal logic (STL) or delegation framework for mission planning and coverage
problems which can be then coupled with our developed algorithms for prediction-
based control, trajectory generation and tracking. This direction would eventually
enable more autonomous missions of unmanned agents operating in multiple domains.

Furthermore, extension of the proposed algorithms to account for disturbances
and creating additional safety measures in the scenarios that are not examined in
this thesis might be of interest. Finally, creating more experimental scenarios and
use cases of the proposed algorithms and conducting more real-world experiments.
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