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Abstract— We develop an algorithm to control an under-
actuated unmanned surface vehicle (USV) using kinodynamic
motion planning with funnel control (KDF). KDF has two key
components: motion planning used to generate trajectories with
respect to kinodynamic constraints, and funnel control, also
referred to as prescribed performance control, which enables
trajectory tracking in the presence of uncertain dynamics and
disturbances. We extend prescribed performance control to
address the challenges posed by underactuation and control-
input saturation present on the USV. The proposed scheme
guarantees stability under user-defined prescribed performance
functions where model parameters and exogenous disturbances
are unknown. Furthermore, we present an optimization prob-
lem to obtain smooth, collision-free trajectories while respecting
kinodynamic constraints. We deploy the algorithm on a USV
and verify its efficiency in real-world open-water experiments.

I. INTRODUCTION

Developing algorithms that increase the level of autonomy
of an unmanned vehicle has been a challenging problem that
has captivated the attention of a broad research community.
From aerial to surface vehicles and autonomous cars, the
adopted algorithms possess features that provide a limited de-
gree of autonomy. Thus, intelligent decision-making and full
autonomy are still open problems [1], [2]. Unmanned surface
vehicles (USVs) are meant to operate in open waters and thus
are subject to uncertain weather conditions and wave and
wind disturbances. Additionally, the model dynamics might
not be fully known, and parameters might change during the
operation. Moreover, USVs can have motion limitations due
to the underactuation and placement of the installed control
thrusters. All this makes the control of a USV challenging,
especially in scenarios where USVs must satisfy performance
and safety specifications. We consider the problem of motion
planning and control of a surface vehicle (a boat) by splitting
it into two layers: trajectory generation, which generates
a trajectory based on the user input and the environment
characteristics, such as obstacles, and trajectory tracking that
tracks the trajectory within prespecified performance and is
robust to the model uncertainties and disturbances.

Motion planning is one of the fundamental problems in
robotics. In general, its task is to move an agent or an object
from a start to a goal location without colliding with envi-
ronment obstacles [3]. Furthermore, kinodynamic sampling-
based motion planning is a class of motion planning algo-
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Fig. 1. Piraya autonomous unmanned surface vehicle. Courtesy of https:
//portal.waraps.org/

rithms that impose the kinodynamic constraints of the system
on the generated trajectories [4]–[6]. The advantage of kin-
odynamic motion planning is that it can produce trajectories
suitable for trajectory tracking even when the dynamics are
not fully known. Namely, the kinodynamic motion planning
problem generates a trajectory using kinematic constraints,
such as avoiding obstacles, and dynamic constraints, such
as bounds on velocity, acceleration, and jerk, without the
requirement of knowledge of complete agent’s dynamical
equations [4]. To that respect, B-splines [7] have recently
regained attention for motion primitives generation in fast
and iterative schemes for quadrotors and other unmanned
agents [8]–[10]. Their polyhedral representation properties
enable simple collision checking, while their derivative prop-
erties are suitable for enforcing velocity and acceleration
constraints on trajectories [9].

The trajectory tracking problem for surface vehicles or
vessels has been broadly studied in the last century [11]. For
underactuated USVs (depicted in Fig. 1) characterized by
three degrees of freedom (position and orientation) and two
inputs, which we consider in this work, the classical approach
is to steer the vessel along a path using the control of forward
velocity and turning [12]. In [13], [14], the authors developed
nonlinear Lyapunov-based controllers for path following and
trajectory tracking for the considered underactuated vehicles
with known or adaptively estimated model parameters. An-
other approach is introducing a frame change and designing
a nonlinear controller in the new frame. The reference frame
is usually chosen as the Serret-Frenet frame and Lyapunov’s
direct method and backstepping ensure the path-following
[15], [16]. However, this type of controller necessitates the
assumption of a constant forward velocity. In more recent
works [17]–[19], the authors use MPC for trajectory tracking
and autonomous docking of USVs [20]. However, most
controllers in the literature assume accurate knowledge of
the dynamical model and parameters.



In this paper, we develop an algorithm for the kinodynamic
motion planning problem of a USV. We extend the Kinody-
namic motion planning via funnel control (KDF) framework
developed in [21]. First, we pose the motion planning prob-
lem as an optimization problem using B-splines to generate
smooth kinodynamic trajectories satisfying both the spatial
and dynamical constraints without using dynamical equations
of motion. Second, we employ a parameter-ignorant control
protocol able to bound the system behaviour to user-specified
performance. To that end, we extend prescribed performance
control (PPC) [22] within the KDF framework to be applica-
ble to the underactuated USV. PPC is a nonlinear control law
that ensures all errors stay inside of user-defined prescribed
performance functions or funnels [23]. PPC, similar to funnel
control [24], [25], implicitly adapts its gains depending on
how close the errors are to the funnels. However, it is
important to highlight a specific limitation of the existing
PPC methodology in the context of this work which is that
it cannot be directly implemented to underactuated systems
[26], [27].

Our main contributions are 1) an optimization-based al-
gorithm that uses a sampling-based motion planner and
generates kinodynamic collision-free trajectories, 2) appro-
priate modifications of the original PPC methodology to
accommodate for the underactuated USV system, and 3)
stability conditions for the closed-loop system under control
input constraints.

Compared to [21], first, we have extended the trajectory
generation with an optimization problem which takes into ac-
count obstacles and constraints on velocity and acceleration
for generating smooth B-splines. In [21], a pure spline inter-
polation is done between the RRT obtained points that reside
in the extended free space based on a fixed time interval con-
straint. This method could result in collisions with obstacles
if the fixed time interval constraint between two points was
not chosen adequately. Second, in this work, we consider a
specific class of underactuated vehicles, necessitating a mod-
ification and extension of the KDF framework originally not
applicable to underactuated nor non-holonomic robots. Third,
we introduce input constraints due to the actuator saturation
on the physical surface vehicle and provide conditions on
the upper bounds of the dynamics and disturbances to ensure
compliant behaviour. Finally, we conducted the real-world,
open-water experiments, significantly enhancing the realism
and complexity compared to the previous paper with lab-
based studies. This allows for a more robust assessment of
the performance of our algorithm and system behaviour in
unpredictable open-water environments.

It is worth noting that prescribed performance has been
used for underwater underactuated vehicles in [28]. However,
in our work, we develop a more general framework that
includes motion planning, considers input constraints, and
provides real-world experimental results.

The paper is organized as follows. In Section II, we
formulate the problem; in Section III, we provide prelimi-
naries and the considered transformation of the dynamics. In
Section IV, we propose a control design for the underactuated

USV and present a stability result. The optimization-based
kinodynamic motion planning is presented in Section V.
In Section VI, we present real-world experimental results.
Finally, Section VII concludes the paper.

II. PROBLEM FORMULATION

We consider a USV with one rotating thruster at the rear.
The model is the reduced 3-DoF (degrees of freedom) boat
model, as described in [11], with motion in surge, sway, and
yaw:

η̇ = R(ψ)ν (1a)
Mν̇ + C(ν)ν +D(ν)ν = τact + τd (1b)

where η = [pT , ψ], p ∈ R2 is the position in the inertial
frame, ψ ∈ [0, 2π) is the orientation of the boat in the
inertial frame, and ν = [u, v, r]T are forward velocity
(surge), lateral velocity (sway) and angular velocity (yaw),
respectively, expressed in the body frame. We further define
x = [ηT , νT ]T ∈ X as the state, where X = R2×[0, 2π)×R3.
Further, R(ψ) ∈ SO(3) is the rotation matrix around the
z-axis, SO(3) is the special orthonormal group SO(n) =
{R ∈ Rn×n : RRT = In,detR = 1}, In ∈ Rn×n is the
identity matrix, M is the inertia matrix, C(ν) denotes the
Coriolis and centripetal effects, and D(ν) is the drag matrix;
τd(x, t) = [τd,x, τd,y, τd,ψ]T are unknown but bounded dis-
turbances in t and locally Lipschitz in x; τact = [X,Y,N ]T

is the generalized control torque vector consisting of control
forces X , Y in forward and lateral directions, respectively,
and the control torque N for rotational motion, where the
notation is adopted from the marine craft control theory. The
dynamics in (1b) can be rewritten as

mu̇(t) = fu(x, t) +X (2a)
mv̇(t) = −kvv(t) + fv(x, t) + Y (2b)
Iz ṙ(t) = fr(x, t) +N (2c)

where m is the unknown mass of the USV, Iz is the unknown
moment of inertia around the z-axis and fu, fv , and fr
are unknown functions that model the drag, Coriolis and
centripetal effects, as well as external disturbances. Note
that, due to the conditions on the external disturbances τd,
these functions are locally Lipschitz in x for each t ∈ R≥0

as well as continuous and uniformly bounded in t for each
x. Also, in Eq. (2b), we explicitly write the drag term for
the unactuated part of the dynamics needed for the stability
analysis in Sec. III-D, where kv > 0 is a positive damping
constant [12]. The considered USV has one thruster at the
rear, thus τact can further be defined as

τact =

XY
N

 =

 FT cos(αr)
FT sin(αr)

∆xFT sin(αr)

 (3)

where FT is the applied thrust and αr is the applied rudder
position representing the USV’s control inputs, and ∆x is
the longitudinal displacement from the center of gravity. The
underactuation stems from the fact that only two control



inputs, FT and αr, are available for control of the 3-DoF
system, and they all affect X,Y , and N . Moreover, two
elements of τact are linearly dependent, i.e., Y = cN , c 6= 0,
thus further limiting the controlled behavior of the system.

Because of the engine’s physical constraints, such as
its limited thrust and inability to generate negative thrust,
we assume control input constraints on the engine thrust
FT ∈ [0, F̄T ], for some positive F̄T > 0. Moreover, the
rudder position is physically constrained, and the angle is
αr ∈ [−ᾱr, ᾱr], where ᾱr ∈ (0, π/6] represents the maximal
rudder position. Thus, the control inputs FT and αr should
satisfy the described control input constraints.

Due to the aforementioned limitations in thrust, we impose
restrictions on the attainable velocity and acceleration in the
inertial frame. These constraints are articulated as ‖ṗ‖ ≤
vmax, ‖p̈‖ ≤ amax, where vmax and amax denote the maximum
permissible velocity and acceleration respectively. These
limitations substantially curtail the performance capacities
of a USV, and thus, necessitate careful consideration when
formulating the reference trajectory for the USV to adhere
to.

We consider that the USV operates in a workspace
W ⊂ R2 with obstacles occupying a closed set O ⊂
R2. We define the free space as the open set Afree :=
{x1 ∈ X : A(x1) ∩ O = ∅}, where A(x1) ⊂ R2 denotes the
set that contains the volume of the USV at state x = x1.
Furthermore, we define the extended free space Afree(ρ̄) :=
{x1 ∈ X : A(x1) ∩ (O ⊕ Bρ̄) = ∅}, where Bρ̄ is a closed
ball of radius ρ̄ centered at the origin in R2, ρ̄ ∈ R>0

is a user-defined distance to the obstacles and ⊕ denotes
Minkowski addition. By “extended” we mean that the USV
has some clearance to the obstacles. The problem we address
is the following:

Problem 1. Given the initial state x(0) ∈ Afree(ρ̄) and
the goal state xg ∈ Afree(ρ̄) of the USV, the constraints on
the velocity vmax and acceleration amax, design a reference
motion trajectory pdes : [0, tf ]→ R2, for some finite tf > 0,
and the control laws FT and αr that fulfill the control input
constraints FT ∈ [0, F̄T ], αr ∈ [−ᾱr, ᾱr] and the solution
x∗(t) of (1) satisfies x∗(t) ∈ Afree for all t ∈ [0, tf ], and
x∗(tf ) = xg .

To solve Problem 1, the following feasibility assumption
is necessary:

Assumption 1. There exists an at least twice differentiable
trajectory pdes : [0, σ] → Pfree(ρ̄), where Pfree(ρ̄) :=
Proj(Afree(ρ̄)), is a projection Proj(·) : X → R2 of the
set X onto R2, with bounded first and second derivatives,
i.e. ‖ṗdes‖ ≤ vmax, ‖p̈des‖ ≤ amax, such that pdes(0) = p(0)
and pdes(σ) = pg = Proj(xg).

III. MAIN RESULTS

The proposed solution for Problem 1 follows a two-
layer approach, similar to [21], and additionally considers
the control input constraints and trajectory optimization.
The lower layer is tasked with robust trajectory-tracking

control, while the higher level generates a trajectory with B-
splines from the path obtained with sampling-based motion
planning.

First, we consider the lower layer and the control problem
of tracking a given trajectory within user-prescribed bounds.

The time-varying desired reference trajectory pdes =
[px,des, py,des]

T : [0,∞) → R2 will be obtained from
the higher layer. For now, pdes are assumed at least twice
continuously differentiable functions of time, with bounded
first and second derivatives. Prescribed performance dictates
that a tracking error signal evolves strictly within a funnel

−ρ(t) < e(t) < ρ(t), ∀t ≥ 0,

defined by prescribed, exponentially decaying functions of
time ρ(t)

ρ(t) = (ρ0 − ρ∞)e−lt + ρ∞, ∀t ≥ 0, (4)

with positive chosen constants ρ0, ρ∞ > 0 and l ≥ 0
as depicted in Fig. 2, thus achieving desired performance
specifications, such as maximum overshoot, convergence
speed, and maximum steady-state error.

e(t)

ρ(t)

−ρ(t)

−ρ∞

ρ∞

e(0)

−ρ0

ρ0

Time

Fig. 2. The control objective is that the error evolves inside the prescribed
performance funnel.

However, as mentioned before, the USV model (1) is
underactuated, and hence the original PPC methodology
cannot be directly applied [26], [27]. Consequently, we
modify the PPC methodology to achieve trajectory tracking
with prescribed performance for the position. This can be
achieved by introducing the distance error ed and orientation
error eo as

ed =
√
e2
x + e2

y, (5a)

eo =
ex
ed

sinψ − ey
ed

cosψ = sinψe (5b)

where ψe is the angle between ẽd = [ex, ey]T and the
orientation vector o = [cosψ, sinψ]T that is defined as
the unit vector representing the orientation. Note that the
orientation error eo, as well as its derivative, only exist if
ed 6= 0.

The issue of ed taking the value zero is not unique to our
work but is a common challenge in the control of planar
motion of physical systems. This problem is inherent in the
nonholonomic nature of these systems that use a transfor-
mation of the relative position in the inertial world frame
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Fig. 3. The considered transformation in NED inertial frame.

to the distance error ed and the orientation error in some
points (ed = 0) is not defined [28]–[31]. This is addressed
by designing the funnel boundaries that will always preserve
ed > ρd,min > 0, where ρd,min is a positive constant, and
therefore, the orientation error is well-defined at all times.
Moreover, due to (5b) it is reasonable to select the funnel
boundaries on the orientation error eo such that |eo| < 1. The
errors between the given reference pdes ∈ R2 and position
p = [px, py]T in NED (North-East-Down) inertial frame as
depicted in Figure 3 are

ex = px,des − px,
ey = py,des − py.

The control objective is to guarantee that the distance and
orientation errors evolve strictly within a funnel dictated by
the corresponding exponential performance functions ρd(t),
ρo(t), which is formulated as

0 < ρd,min < ed(t) < ρd(t) (6a)
−ρo(t) < eo(t) < ρo(t) (6b)

for all t ≥ 0, given the initial funnel compliance ρd,min <
ed(0) < ρd(0), |eo(0)| < ρo(0). The adopted exponentially-
decaying performance functions are ρi(t) = (ρi,0 −
ρi,∞) exp(−lit) + ρi,∞, i ∈ {d, o}. Note that, in our setup,
it is desired for ed to not be zero to avoid the singularity and
to remain inside the performance funnel whose lower bound
is greater than zero.

Problem 1 can be divided into two subproblems. The
first subproblem involves the selection of the reference
trajectory pdes, and the second subproblem is to track this
trajectory within specified bounds while respecting the input
constraints. If an algorithm is designed such that the closed-
loop system satisfies equations (6) and the input constraints
are met, then the second subproblem is solved. This ensures
that the solution x∗(t) of equation (1) remains within the
free region Afree. The first subproblem, which involves the
choice of pdes, will be addressed in the subsequent sections
of the paper.

A. Transformed dynamics

We use the specific characteristics of the underactuated
model of the USV to design prescribed performance con-
trollers. Since Y is proportional to N and we can effectively
control only one of them, the idea is to control the forward
velocity dynamics u and rotation r, while keeping the lateral
velocity v below a specified threshold. Using the introduced
transformation (5), the error dynamics are

ėd = −u cosψe + v sinψe

+ ṗx,des cos(ψ − ψe) + ṗy,des sin(ψ − ψe) (7a)

ėo = r cosψe +
u

ed
sinψe cosψe +

v

ed
cos2 ψe

− ṗx,des

ed
(sinψe cos(ψ − ψe)− sinψ) (7b)

− ṗy,des

ed
(sinψe sin(ψ − ψe) + cosψ)

mu̇ = fu(x, t) +X (7c)
mv̇ = −kvv + fv(x, t) + cN (7d)
Iz ṙ = fr(x, t) +N (7e)

where we used the observation from (3) that Y = cN, c =
1/∆x.

B. Control Design

Now, we describe the proposed control design procedure.
1) PPC on distance error: We define the distance nor-

malized error with asymmetric funnel

ξd =
2ed(t)− ρd(t)− ρd,min

ρd(t)− ρd,min
(8)

where ρd(t) is the prescribed performance function as de-
fined in Eq. (4) such that ρd(t) > ρd,min > 0 for all t ≥ 0.
The asymmetric funnel is chosen to impose the guarantee
on ed to be always positive. Thus, the distance-error control
objective is equivalent to keeping ξd(t) inside of −1 <
ξd(t) < 1, which is equivalent to 0 < ρd,min < ed(t) < ρd(t),
for all t ≥ 0. Hence, eo and ėo will be well defined. Then,
we define the transformation

εd = T(ξd(t))

where the transformation T is a strictly increasing, bijective
function T : (−1, 1)→ (−∞,∞) defined as

T(ξ(t)) = atanh(ξ(t)) =
1

2
ln

1 + ξ(t)

1− ξ(t) . (9)

Therefore, maintaining the boundedness of T(ξ(t)) we
achieve the control objective of keeping ξ(t) ∈ (−1, 1). We
design the forward velocity reference signal

udes = kdεd (10)

where kd > 0 is a user-defined gain.



2) PPC on forward velocity error: We define the forward
velocity error as

eu = u− udes.

Then, following similar procedure for the error eu, we intro-
duce the performance function ρu(t) with ρu(0) > |eu(0)|
and define the normalized error with a symmetric funnel

ξu =
eu(t)

ρu(t)
. (11)

The transformation T gives us εu = T(ξu). Then, we design
the desired generalized force, with a gain ku > 0, as

Xdes = −kuεu (12)

3) PPC on orientation error: Following a similar proce-
dure as above, we define the normalized error

ξo =
eo(t)

ρo(t)

with appropriate ρo(t), ρo(0) > |eo(0)|. We define the
transformation εo = T(ξo(t)) and design the angular velocity
reference

rdes = −koεo. (13)

where ko > 0 is a gain.
4) PPC on angular velocity error: Finally, we define the

angular velocity error

er = r − rdes,

its normalized version

ξr =
er(t)

ρr(t)

and the transformation εr = T(ξr). Then, we design the
desired generalized torque, with a gain kr > 0, as

Ndes = −krεr. (14)

Note that, all gains ki, i = {d, u, o, r}, are user-defined.
Also note that the desired generalized force Xdes and

torque Ndes are realized through the actual control inputs,
which are constrained, and thus we examine the input
constraints in the next section.

C. Handling input constraints

In III-B, we derived the desired generalized force Xdes and
torque Ndes that must be realized by the controlled thrust FT
and the controlled rudder position αr as in (3). The desired
generalized force (12) and torque (14) are in R2 while the
control inputs are physically constrained to be in the set

(FT , αr) ∈ U = [0, F̄T ]× [−ᾱr, ᾱr], (15)

where F̄T > 0 denotes the maximal thrust of the engine
and ᾱr ∈ (0, π/6] represents the maximum rudder position.
Therefore, an additional mapping is required to obtain the
control inputs from (3), (12), and (14).

We define the following saturation functions to model
these constraints:

αr = σαr
(?) =

{
?, | ? | ≤ ᾱr
ᾱr sgn(?), | ? | > ᾱr

(16)

and

FT = σFT
(?) =


F̄T , ? > F̄T

?, ? ≤ F̄T
0, ? < 0

(17)

Then, the actual applied control τact will depend on the
saturation functions (16) and (17).

Let us introduce two virtual control inputs uα, uF ∈ R as

Xdes = uF cosuα

Ndes = ∆xuF sinuα

Therefore,

uα = arctan

(
Ndes

∆xXdes

)
= arctan

(
kα
εr
εu

)
where kα = kr

∆xku
, and we set the control input

αr = σαr (uα) = σαr

(
arctan

(
kα
εr
εu

))
. (18)

Note that this is only valid when uF 6= 0. Furthermore,

uF =
Xdes

cosαr
= − kuεu

cosαr

and we set the control input

FT = σFT
(uF ) = σFT

(
− kuεu

cosαr

)
. (19)

where αr is implemented according to its definition in (18).
Also note that in the last two equations, we immediately used
the actual control input αr rather than the virtual one uα as
it will produce less oscillations to FT control input when
|uα| > ᾱr is saturated.

The saturation functions induce an additional block within
the closed-loop system and require further stability analysis.
In the next section, we show the conditions on the input
constraints under which stability is guaranteed.

D. Stability

We present the stability guarantees of the proposed control
design under input constraints.

Theorem 1. Consider the transformed USV dynamics (7)
under the proposed control scheme (8)-(19). If the following
assumptions hold

0 <
¯
FT ≤ FT (20a)

F̄u ≤ F̄T cos ᾱr (20b)
F̄r ≤ ∆x

¯
FT sin ᾱr (20c)

|ψe(0)| < π

2
(20d)

where
¯
FT is a positive constant, F̄T and ᾱr are the input

constraints (15), and F̄u and F̄r are appropriate positive



constants, then it holds that ρd,min < ed(t) < ρd(t), |eo(t)| <
ρo(t) and all closed-loop signals are bounded for all t ≥ 0.

Remark 1. As mentioned in the problem formulation, the
considered surface vehicle can only move forward (without
relying on the drag or disturbances), thus u ≥ 0. Conse-
quently, to reach the reference (10) and reduce the forward
velocity u, the only options available are to either reduce
the forward thrust or completely cut it and rely solely on the
drag forces. Because the model is unknown and no prediction
is used, this behaviour can occur and is an inherent property
of the considered underactuated vehicle. Suppose one wants
to consider the usage of drag forces for braking too. In that
case, the actuator model must be augmented with a part that
depends on the velocities of the vehicle and surrounding
water and the position of the rudder, which is, however,
outside of the scope of this work. Therefore, we restrict
ourselves only to the case when the applied thrust is positive,
as in (20a). Future work will include the backward motion,
where these effects will be considered.

Remark 2. The assumptions (20b) and (20c) can be intu-
itively explained as the guarantee that for the worst case of
the applied generalized force X and torque N , there exists
enough energy to override the dynamics of the system. When
the trajectory evolves inside of the funnels, the constants
F̄u and F̄r can be understood as the upper bounds on the
sum of three components that depend on the dynamics and
disturbances, the derivative of the reference signal, in this
case u̇des and ṙdes, respectively, and a term li(ρi,0 − ρi,∞),
i = u, r, that prescribes the speed of convergence. The
constants F̄u and F̄r will be explicitly defined in the proof
of Theorem 1. Please further note that the conditions of
Theorem 1 are only sufficient. The experiment thus, in a
sense, reveals the design flexibility of the approach.

Remark 3. The requirement that |ψe(0)| < π
2 is needed

to ensure the initial compliance and boundedness of the
orientation error. Moreover, it is shown that ψe will remain
bounded as |ψe(t)| < π

2 , for all t ≥ 0, which means that
pdes(t) will always be on the positive side of the body axis
xb, as seen on Fig. 3. Thus, the reference trajectory is
always kept in front of the USV in its body frame. This is a
reasonable behaviour given the observations on the forward
motion of the USV and Remark 1.

Remark 4. The presented funnel design for distance error
ed serves as clearance in the motion planner in Section IV,
enabling the derivation of a collision-free trajectory. It is cru-
cial to highlight that the choice of the funnel characteristics
can be customized by the user. However, in practice, selecting
excessively small values for ρ̄ is not advisable due to the
potential generation of large control inputs, which might not
be realizable by real actuators. Therefore, one must take into
account the capabilities of the system when choosing ρ̄ and
the funnel functions.

Proof of Theorem 1: The proof proceeds in two steps.
First, we show the existence of a local solution such that

ξd(t), ξo(t), ξu(t), ξr(t) ∈ (−1, 1), for a time interval t ∈
[0, tmax). Next, we show that the proposed control scheme
retains the aforementioned normalized signals in compact
subsets of (−1, 1) in all saturation modes, which leads to
tmax =∞, thus completing the proof.

Part I: First, we consider the transformed state vector
χ = [ed, eo, u, v, r] ∈ X = R5 that corresponds to the
transformed error dynamics in (7) and we define the open
set:

Ω =
{

(χ, t) ∈ X × [0,∞) : ξd ∈ (−1, 1), ξo ∈ (−1, 1),

ξu ∈ (−1, 1), ξr ∈ (−1, 1), |v| < v̄
}
, (21)

where v̄ is a positive constant that will be given later and is
only relevant for analysis purposes.

Note that the choice of the performance functions at t = 0
implies that ξd(0), ξo(0), ξu(0), ξr(0) ∈ (−1, 1), implying
that Ω is nonempty. By combining (7), (18), and (19),
we obtain the closed-loop system dynamics χ̇ = fχ(χ, t),
where fχ : X × [0, tmax) is a function continuous in t and
locally Lipschitz in χ. Therefore, the conditions of Theorems
2.1.1(i) and 2.13 in [32] are satisfied, and we conclude that
there exists a unique and local solution χ : [0, tmax) → X
such that (χ(t), t) ∈ Ω for all t ∈ [0, tmax). Therefore, it
holds that

ξd ∈ (−1, 1) (22a)
ξo ∈ (−1, 1) (22b)
ξu ∈ (−1, 1) (22c)
ξr ∈ (−1, 1) (22d)
v ∈ (−v̄, v̄) (22e)

for all t ∈ [0, tmax). We next show that the normalized errors
in (22) remain in compact subsets of (−1, 1) and (−v̄, v̄).
Note that (22) implies that that transformed errors εd, εo, εu,
εr, are well-defined for t ∈ [0, tmax).

Part II: Consider now the candidate Lyapunov function

Vd =
1

4
ε2
d

Differentiating Vd along the local solution χ(t) of the re-
duced error dynamics (7) we obtain

V̇d = εdsd(ρd − ρd,min)−1(ėd −
ρ̇d
2

(1 + ξd))

= εdsd(ρd − ρd,min)−1(−u cosψe + v sinψe

+ ṗx,des cos(ψ − ψe) + ṗy,des sin(ψ − ψe)−
ρ̇d
2

(1 + ξd))

where sd = d
dtT (ξ) = 1

1−ξ2d
. Because of (22b), it holds

that |eo(t)| = | sin(ψe(t))| < ρo(t) ≤ ρo(0) < 1 for all
t ∈ [0, tmax). That means that |ψe(t)| ≤ arcsin(ρo(0)) < π

2
and hence | cos(ψe(t))| ≥ cos(arcsin(ρo(0))) =

¯
cψe

> 0 for
all t ∈ [0, tmax).

Using u = udes +eu, (10), the boundedness of ṗdes, ρd and
(22) we obtain

V̇d ≤ −kd
¯
cψe |sd(ρd−ρd,min)−1|ε2

d+|sd(ρd−ρd,min)−1||εd|F̄d



where F̄d is a constant, independent of tmax, satisfying

F̄d ≥ |eu cosψe − v sinψe + ṗx,des cos(ψ − ψe)

− ṗy,des sin(ψ − ψe)−
ρ̇d
2

(1 + ξd)|.

for all t ∈ [0, tmax). This shows the ultimate boundedness
of εd, i.e. V̇d < 0 when F̄d

kd
< |εd|. Thus εd is ultimately

bounded by Theorem 4.18 of [33] as

|εd| ≤ ε̄d = max

{
|εd(0)| , F̄d

kd
¯
cψe

}
(23a)

for all t ∈ [0, tmax). By employing the inverse of (9), we
obtain

|ξd(t)| ≤ ξ̄d = tanh ε̄d < 1 (23b)

and 0 < ρd,min < ed(t) < ρ(t), for all t ∈ [0, tmax).
Following the same procedure for eo and considering a

candidate Lyapunov function Vo = 1
2ε

2
o, we differentiate Vo

along the local solution χ(t) of the reduced error dynamics
(7) to obtain

V̇o =εosoρ
−1
o (ėo − ρ̇oξo)

=εosoρ
−1
o (r cosψe +

u

ed
sinψe cosψe +

v

ed
cos2 ψe

− ṗx,des

ed
(sinψe cos(ψ − ψe)− sinψ)

− ṗy,des

ed
(sinψe sin(ψ − ψe) + cosψ)− ρ̇oξo).

Using r = rdes + er, (13), the boundedness of ṗdes, ρo and
(22) we obtain

V̇o ≤ −ko
¯
cψe |soρ−1

o |ε2
o + |soρ−1

o εo|F̄o
where

F̄o ≥|er cosψe +
u

ed
sinψe cosψe +

v

ed
cos2 ψe

− ṗx,des

ed
(sinψe cos(ψ − ψe)− sinψ)

− ṗy,des

ed
(sinψe sin(ψ − ψe) + cosψ)− ρ̇oξo|.

for all t ∈ [0, tmax). Thus, from the derivative of Vo we can
deduce the ultimate boundedness of εo as

|εo| ≤ ε̄o = max

{
|εo(0)| , F̄o

ko
¯
cψe

}
(24a)

and we get
|ξo(t)| ≤ ξ̄o = tanh ε̄o < 1. (24b)

Differentiating udes and rdes and using their definitions (10)
and (13), respectively, and (23a) and (24a), we conclude the
boundedness of u̇des and ṙdes.

Furthermore, consider the candidate Lyapunov function
Vu = 1

2mε
2
u. Differentiating we obtain

V̇u = mεusuρ
−1
u

(
1

m
X +

1

m
fu(x, t)− u̇des − ρ̇uξu

)
= εusuρ

−1
u X + εusuρ

−1
u (fu(x, t)−m(u̇des + ρ̇uξu))

Now, X = FT cosαr from (3) where FT and αr as in
(19) and (18). Therefore, we must consider several cases
for the different saturation levels. Since cosαr ∈ [cos ᾱr, 1]
and because αr ≤ π

6 , we have cosαr > 0. Let us now
consider the saturation effects on the thrust that come from
the definition of FT given by (19) and σFT

FT =


F̄T , for εu < − 1

ku
F̄T cosαr

− kuεu
cosαr

, for − 1
ku
F̄T cosαr ≤ εu < 0

0, for εu ≥ 0

Due to Assumption (20a) and the discussion in Remark 1
we only consider the case when εu < 0. However, note that
stability is not compromised in the case when εu ≥ 0. For
− 1
ku
F̄T cosαr ≤ εu < 0 we have the unsaturated case in

which X = −kuεu, leading to

V̇u ≤ −ku|suρ−1
u |ε2

u + |suρ−1
u εu|F̄u,

where
|fu(x, t)−m(u̇des + ρ̇uξu)| ≤ F̄u, (25)

for all t ∈ [0, tmax). This yields the ultimate boundedness of
εu with

|εu| ≤ ε̄u = max

{
|εu(0)| , F̄u

ku

}
(26a)

|ξu(t)| ≤ ξ̄u = tanh ε̄u < 1. (26b)

For the saturated case, εu < ε̃u = − 1
ku
F̄T cosαr, the

applied force is X = F̄T cosαr = −kuε̃u and then V̇u
becomes

V̇u ≤ −ku|suρ−1
u |εuε̃u + |suρ−1

u εu|F̄u
Since εu < ε̃u < 0, then

V̇u ≤ −ku|suρ−1
u |εuε̃u + |suρ−1

u εu|F̄u
= −ku|suρ−1

u |(−|εu|)ε̃u + |suρ−1
u εu|F̄u

= |suρ−1
u εu|(kuε̃u + F̄u) ≤ 0

because of Assumption (20b), i.e., F̄u ≤ F̄T cos ᾱr ≤
F̄T cosαr = −kuε̃u. The Lyapunov function is negative
during the saturation of the thrust, and |εu(t)| and |ξu(t)|
remain upper bounded as

|εu| ≤ |ε̃u|, |ξu(t)| ≤ ξ̃u = tanh ε̃u < 1.

for all t ∈ [0, τmax).
Finally, following a similar procedure with Vr = 1

2Izε
2
r ,

we obtain that

V̇r = εrsrρ
−1
r N + εrsrρ

−1
r (fr(x, t)− Iz(ṙdes + ρ̇uξu))

where N = ∆xFT sinαr. Thus, using (18) and the definition
of σαr

, we consider the saturation effects on the rudder angle

αr =

arctan
(
kα

εr
εu

)
, for | arctan

(
kα

εr
εu

)
| ≤ ᾱr

−ᾱr sgn(εr), for | arctan
(
kα

εr
εu

)
| > ᾱr

where we used the fact that arctan(?) is an odd function
and that εu can only approach zero from the negative side
due to (20a). The stability of the unsaturated case can



be shown using (19), then N = ∆x(− kuεu
cosαr

) sinαr =
−∆xkuεu tanαr = −krεr and

V̇r ≤ −kr|srρ−1
r |ε2

r + |srρ−1
r εr|F̄r,

where
|fr(x, t)− Iz(ṙdes + ρ̇rξr)| ≤ F̄r, (27)

for all t ∈ [0, tmax). This shows the ultimate boundedness
of εr with

|εr| ≤ ε̄r = max

{
|εr(0)| , F̄r

kr

}
(28a)

|ξr(t)| ≤ ξ̄r = tanh ε̄r < 1. (28b)

Note that in the case when FT is saturated, i.e., FT = F̄T =
− kuε̃u

cosαr
, the result is similar. For the saturated case it holds

that N = −∆xFT sin ᾱr sgn(εr), then V̇r becomes

V̇r ≤|srρ−1
r |(−εr∆xFT sin ᾱr sgn(εr) + |srρ−1

r εr|F̄r)
= |srρ−1

r |(−|εr| sin ᾱr∆xFT + |εr|F̄r)
= −|srρ−1

r εr|(∆xFT sin ᾱr − F̄r)
and due to Assumptions (20a) and (20c), i.e., F̄r ≤
∆x

¯
FT sin ᾱr ≤ ∆xFT sin ᾱr, V̇r ≤ 0 and εr is asymp-

totically stable during the saturated period and |εr(t)| and
|ξr(t)| remain bounded.

To show that the velocity v remains within a compact
subset of (−v̄, v̄), let us consider the following candidate
Lyapunov function Vv = 1

2mv
2 and differentiate Vv along

the local solution χ(t) of the reduced error dynamics (7) to
obtain

V̇v = v(−kvv + fv(x, t)− ckrεr)
≤ −kvv2 + F̄v|v|

where F̄v ≥ |fv(x, t) − ckrεr|, for all t ∈ [0, tmax), due
to the boundedness of εr, shown in (28a), and fv(x, t), as
introduced in Sec. II is continuous and uniformly bounded,
thus remaining within a compact subset of Ω it is bounded
as well. Thus, we obtain that v remains in a compact set

|v| ≤ v̄′ = max

{
|v(0)|, F̄v

kv

}
. (29)

Furthermore, by choosing sufficiently small control gains
ki, i ∈ {d, o, u, r}, and initial values of the respective
performance prescribed functions ρi(0), it can be verified
that |v| ≤ v̄′ < v̄ which guarantees that (χ, t) remains in a
compact subset of Ω.

What remains to be shown is tmax = ∞. To this end,
note that (23), (24), (26), (28) and (29) imply that (χ, t)
remain in a compact subset of Ω, i.e., there exists a positive
constant

¯
d such that dS((χ, t), ∂Ω) ≥

¯
d > 0, for all

t ∈ [0, tmax), where dS((χ, t), ∂Ω) = inf
y∈∂Ω

‖(χ, t)− y‖
is the distance of a point (χ, t) ∈ X × [0,∞) to the
boundary ∂Ω of the set Ω. Since all relevant closed-loop
signals have already been proven bounded, it holds that
limt→t−max

(
‖χ(t)‖+ dS((χ(t), t), ∂Ω)−1

)
≤ d̄, for some

finite constant d̄, and hence direct application of Theo-
rem 2.1.4 of [32] dictates that tmax = ∞, which completes
the proof.

IV. KINODYNAMIC MOTION-PLANNING

In the previous section, we presented a control protocol
for the lower layer of the proposed solution for Problem 1.
In this part, we present an optimization-based kinodynamic
motion planning algorithm for generating smooth trajectories
pdes that fulfill imposed kinodynamic constraints such as
the velocity vmax and acceleration amax constraints from
Problem 1. Our approach builds on KDF [21], which is a
framework that uses PPC to track and keep an agent inside of
a funnel around a trajectory obtained from a sampling-based
motion planner generated path. The presented control design
from the previous section provides us with the guarantee
that the vehicle is going to stay inside of the prescribed
funnel bounds around the reference trajectory. In this section,
we consider cubic B-splines [7] and use some of their
properties to generate the reference trajectory that aims to
fulfill Assumption 1.

First, we sample the extended free space Afree(ρ̄) and
obtain a path from the initial position to the goal position
using Rapidly-exploring Random Trees (RRT) [3]. The path
is used to generate the desired trajectory pdes in Afree(ρ̄)
and by employing the described control design that ensures
ed < ρd,0, where ρd,0 < ρ̄, the USV maintains a collision-
free trajectory, as it remains ρ̄-close to pdes.

The RRT obtained path is non-smooth, and smoothening it
by interpolating through the path points without considering
the obstacles might result in collisions [21], [34]. Therefore,
we pose the smoothening problem of the RRT obtained path
{Xk}NX−1

k=0 , Xk ∈ R2, where NX is the number of obtained
path points, as an optimization problem. The uniform B-
splines are determined by N = NX + 4 control points
{qk}N−1

k=0 , qk ∈ R2, and M = N + d + 1 uniformly
separated knots tk = k∆t, k = 4, ..., N , where d = 3
is the degree of the curve. The knot spacing, denoted by
∆t, can be set a priori, which may result in sub-optimal
trajectories or, as in our case, treated as an optimization
variable at the expense of computation time. The rest of
the knots are defined as t0 = t1 = t2 = t3 = 0 and
tN = tN+1 = tN+2 = tN+3 = tN+4, to guarantee zero
velocity and acceleration at the initial and final position
imposed with qk = X0, for k = 0, 1, 2 and qk = XNX

,
for k = N − 3, N − 2, N − 1. The goal is to smoothen
the desired trajectory pdes based on the obtained RRT path.
This is achieved by minimizing the distance of the B-spline
pdes(tk) at each knot from the RRT path points. Using the
properties for uniform B-splines, pdes can be evaluated on
a segment t ∈ [tk, tk+1) with the knowledge of any four
consecutive control points Qk = [qk−3, qk−2, qk−1, qk]T , as

pdes(t) = uTMQk

where u = [1, u, u2, u3]T is the basis vector with u =
t−tk

tk+1−tk ∈ [0, 1). The matrix M is a fixed known matrix
[35] independent of k given by

M =
1

6

 1 4 1 0
−3 0 3 0
3 −6 3 0
−1 3 −3 0

 .
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Fig. 4. The convex hull of a set of four consecutive points is linearly
separable from the obstacles.

Then the distance at tk can be calculated as

‖pdes(tk)−Xk‖ =
∥∥uT (0)MQk −Xk

∥∥ =
∥∥mTQk −Xk

∥∥
where m = 1

6 [1, 4, 1, 0]T .
We are also interested in keeping the trajectory inside of

the specified velocity vmax and acceleration bounds amax,
such that ‖ṗdes‖ ≤ vmax, ‖p̈des‖ ≤ amax. Using the derivative
properties of B-splines, we can obtain the velocity vk and
acceleration ak at a control point qk as

vk =
d(qk − qk−1)

tk+d − tk
=
qk − qk−1

∆t
(30)

ak =
(d− 1)(vk − vk−1)

tk+d−1 − tk
=

vk − vk−1

∆t
(31)

for uniformly spaced knots. Moreover, it is beneficial to
obtain as smooth curve as possible. Thus we include a third
derivative (jerk) minimization term in the cost function as

‖jk‖∆t =
1

∆t
‖ak − ak−1‖∆t =

∥∥bTQk∥∥ (32)

where b = [−1, 3,−3, 1]T . Since we are optimizing over
a fixed number of control points and uniformly separated
knots, we can also include ∆t in the optimization problem
to minimize the time duration.

Because four consecutive control points create a convex
hull around a spline segment, collision avoidance can be
done using linear separation. The obstacles are modeled as
n-sided convex polygons with vertices at pjl ∈ R2 of a j-th
polygon, l = 1, ..., n, compactly written as Pj = [pj1, ...pjn].
The existence of a line that separates the two sets is based
on the existence of hij ∈ R2 and dij ∈ R, where i =
0, ..., N − 4 denotes the i-th convex hull around a spline
segment determined with Qi, such that

Qihij > dij14, (33)
Pjhij < dij1n, (34)

for all i, j, where 1n ∈ Rn denotes a unit vector. The linear
separation concept is depicted on Fig. 4.

Finally, we can state the nonlinear optimization problem:

Problem 2 (Kinodynamic trajectory generation).

min
∆t,qk,hij ,dij

N−4∑
k=3

w1

∥∥mTQk −Xk−2

∥∥2
+w2

∥∥bTQk∥∥2
+w3∆t

subject to

qk = X0, k ≤ 2, (35a)
qk = XN−5, k ≥ N − 3, (35b)
‖qk − qk−1‖ ≤ vmax∆t, k ≥ 1, (35c)

‖qk − 2qk−1 − qk−2‖ ≤ amax∆t2, k ≥ 2, (35d)
Qihij > dij14, ∀i, j (35e)
Pjhij < dij1n, ∀i, j (35f)

In Problem 2, the constraints (35a) and (35b) denote
the initial and final conditions, (35c)-(35d) the velocity and
acceleration constraints, (35e)-(35f) the linear separability
conditions as explained previously. Based on the weight
choices wi ≥ 0, i = 1, 2, 3, in Problem 2, we can prioritize
between the three objectives, namely, fitting the curve to the
RRT obtained path, minimizing the jerk, and minimizing
the time, respectively. Note that we shifted indices of Qk
such that the control points are not optimized over the fixed
control points determining the initial and final values of the
curve. Also, note that it is possible to choose w1 = 0 and
thus avoid using the RRT path. However, this option results
in an order of magnitude higher execution time, therefore
making the RRT path useful prior for the curve generation.

Note that the optimization problem is nonlinear due to
(35d). A relaxed optimization problem could be equivalently
written as a quadratically constrained quadratic program
(QCQP) by omitting the acceleration constraint and some
basic mathematical manipulations. However, this is out of
the scope of this work. To solve this optimization problem,
we used interior point optimizer (IPOPT) in CasADi [36].
The computation time depends on how many points are used
as the prior from the RRT obtained path, as they directly
influence the number of the spline control points which are
the variables of the optimization.

A simulation example of the presented trajectory genera-
tion algorithm with vmax = 10, amax = 2 is given on Fig. 5.
On average, the optimization process typically completes
within a range of 5 to 20 seconds across multiple runs on an
Intel i7-8665U CPU running at 1.90GHz with 8 cores and
Ubuntu 18.04 operating system. If the RRT path is not used
as the prior in the optimization problem, the optimization
might extend to 3-5 minutes on a user-defined number of
points. Furthermore, on Fig 5, we provide a comparison with
trajectories generated using [21]. Note that [21] uses inter-
polation through RRT points which might result in collisions
with obstacles if the fixed time interval constraint between
two points is not chosen appropriately, as the interpolated
spline is not checked for collision. Furthermore, fluctuations
in velocity and acceleration profiles can be significantly
reduced with Problem 2 due to the constraints (35c)-(35d).
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Fig. 5. The figure shows two runs of the trajectory generation algorithm with RRT and the same setup of obstacles as it will be in the real-world
experiments. Two different RRT paths were obtained for comparison. The trajectory is then generated using the optimization problem in Problem 2.
Moreover, we show the optimization result without RRT points with w1 = 0 in green. Note that interpolating through the RRT points only as in [21]
would result in a difficult trajectory to follow with unnecessary deviations as depicted in red.

V. EXPERIMENTAL RESULTS

The overall scheme is tested in real-world open-water ex-
periments. We used Piraya, an autonomous USV developed
by SAAB Kockums AB, as a research platform equipped
with cameras, GPS, LIDAR, etc., in the WARA-PS research
arena [37]. In this experiment, the GPS is used for deter-
mining the absolute position, while the obstacles are defined
beforehand and remain static during the experiment. Piraya
is 4 meters long, and the goal point is approximately 450
meters away from the initial position with obstacles present.
The funnels are chosen to be static (ρ0 = ρ∞ and l = 0)
during the 3-minute long experiment because the desired
error has the same performance criteria throughout the whole
experiment. Moreover, they are set relatively loose to avoid
saturating the control inputs too often. Thus, ρd = 28,
ρd,min = 0.5, ρu = 25, ρo = 0.9999, ρr = 15.

The top view of the experiment is depicted in Figure 6
while the timelapse perspective view of the experiment is
visible in Figure 7. We can observe that, neglecting the de-
viation that occurred in the first moments of the experiment,
the surface vehicle was able to follow the trajectory. The
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Fig. 6. Top view of the real-world open water experiments

initial deviation occurred because the reference errors were
relatively small to excite the control algorithm to produce
the control thrust FT , so the USV was drifting due to the
winds and open water currents. After a few seconds, the

Fig. 7. The timelapse perspective view (slightly distorted due to the rotation of the UAV camera) of the experimental run with obstacle areas in orange.
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Fig. 8. Error evolution and the funnels in the real-world experiment. Note
that the orientation error is dimensionless.

control inputs were activated when the errors became larger,
and the USV successfully recovered from the deviation. This,
however, can be alleviated by tightening the funnels.

The funnels are depicted in Figure 8, and all signals are
bounded as expected. The distance error is always positive,
but it is interesting to observe that it is kept relatively close
to the funnel boundary during the experiment. This can
be explained by the fact that the chosen loose funnel will
generate more control thrust when the error ed is relatively
large.

In Figure 9, the control inputs are presented, and periods
of saturation are visible. They occur mainly in the first half
of the experiment, during which the USV was expected to
recover from the initial deviation and subsequent overshoots.
The most problematic behaviour is as expected when FT =
0, which causes αr to be saturated, although the orientation
error might not require that action. This is discussed in
Remark 1.

One of the reasons that might cause the unwanted chat-
tering and oscillations in the control input FT as well as in
error ed, visible in Fig. 8, are the unmodeled input delays that
are present on the controlled USV. Namely, the engine has
inherent delays which may induce these effects, which for
a bystander, look like the USV is periodically accelerating
and decelerating unnecessarily, which is visible in Figure 10.
Thus, the focus of future work will be on removing these
oscillations.

VI. CONCLUSION

In this paper, we proposed improved kinodynamic motion
planning via funnel control (KDF). We derived stability
results under input constraints and system underactuation.
The presented framework is tested in a real-world open-water
experiment. In future work, we plan to investigate how to
remove the oscillations in the forward motion that may be
due to the control input delays. Moreover, it may be benefi-
cial to explore the effect of the funnel size and performance
functions on the behaviour of the vehicle. Furthermore, we
plan to redesign the motion planning procedure with B-
splines as an iterative online scheme suitable for moving
obstacles and dynamic environments.
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